

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS
TESTING AND EVALUATION OF THE CONFIGURABLE
FAULT TOLERANT PROCESSOR (CFTP) FOR SPACE-

BASED APPLICATIONS

by

Charles A. Hulme

December 2003

Thesis Co-Advisors: Herschel H. Loomis, Jr.
 Alan A. Ross

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Testing and Evaluation of the Configurable Fault Tol-
erant Processor (CFTP) For Space-Based Applications
6. AUTHOR(S) Hulme, Charles A.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

With the complexity of digital systems, reliability considerations are important. In many digital systems it is desirable to con-
tinuously monitor, exercise and test the system in order to determine whether the system is performing as desired. Such moni-
toring may enable automatic detection of failures via periodic testing or through the use of codes and checking circuits (e.g.,
built-in self-testing). While any complex system requires testing to ensure satisfactory performance, satellite systems require
extensive testing for two additional reasons: they operate in an environment considerably different from that in which they
were built, and after launch they are inaccessible to routine maintenance and repair. Because of these unique requirements, a
specific solution is required such as a self-contained, autonomous, self-testing circuit. The focus of this thesis is on the design
and development of a series of Built-In Self-Tests (BISTs) for use with the Configurable Fault Tolerant Processor (CFTP). The
results of this thesis are two detailed designs for a Random Access Memory (RAM) BIST and a Read-Only Memory (ROM)
BIST, as well as a conceptual design for a Field Programmable Gate Array (FPGA) BIST. These designs are stored on board
the CFTP and are made to operate remotely and autonomously. Together, these BISTs provide a means to monitor, exercise,
and test the CFTP components and thus facilitate a reliable design.

15. NUMBER OF
PAGES

269

14. SUBJECT TERMS
Field-Programmable Gate Array (FPGA), Built-In Self-Test (BIST), FPGA testing, Read-Only
Memory (ROM) testing, Random Access Memory (RAM) testing, system diagnosis, system reliability

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

TESTING AND EVALUATION OF THE CONFIGURABLE FAULT TOLERANT
PROCESSOR (CFTP) FOR SPACE-BASED APPLICATIONS

Charles A. Hulme

Captain, United States Marine Corps
B.S., Texas A&M University, 1995

M.S., Old Dominion University, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2003

Author: Charles A. Hulme

Approved by: Herschel H. Loomis, Jr.

Thesis Co-Advisor

Alan A. Ross
Thesis Co-Advisor

John P. Powers
Chairman, Department of Electrical and Computer Engineering

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

With the complexity of digital systems, reliability considerations are important.

In many digital systems it is desirable to continuously monitor, exercise and test the sys-

tem in order to determine whether the system is performing as desired. Such monitoring

may enable automatic detection of failures via periodic testing or through the use of

codes and checking circuits (e.g., built-in self-testing). While any complex system re-

quires testing to ensure satisfactory performance, satellite systems require extensive test-

ing for two additional reasons: they operate in an environment considerably different

from that in which they were built, and after launch they are inaccessible to routine main-

tenance and repair. Because of these unique requirements, a specific solution is required

such as a self-contained, autonomous, self-testing circuit. The focus of this thesis is on

the design and development of a series of Built-In Self-Tests (BISTs) for use with the

Configurable Fault Tolerant Processor (CFTP). The results of this thesis are two detailed

designs for a Random Access Memory (RAM) BIST and a Read-Only Memory (ROM)

BIST, as well as a conceptual design for a Field Programmable Gate Array (FPGA)

BIST. These designs are stored on board the CFTP and are made to operate remotely and

autonomously. Together, these BISTs provide a means to monitor, exercise, and test the

CFTP components and thus facilitate a reliable design.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1

II. CONFIGURABLE FAULT TOLERANT PROCESSOR DESIGN5
A. BACKGROUND ..5

1. Effects..6
2. Solution ...6

B. CONCEPT..7
C. COMPONENTS...11
D. ARCHITECTURE...13
E. CFTP STATUS...15
F. CHAPTER SUMMARY..16

III. BUILT-IN SELF-TEST...17
A. AN INTRODUCTION TO BIST..17

1. What is BIST? ..17
2. Basic Architecture..18
3. Advantages and Disadvantages ..18
4. The CFTP Self-Tests..19

B. RANDOM ACCESS MEMORY TESTING ...21
1. Memory Problems..22

a. Electrical Wiring Problems ..23
b. Chip Connection Problems...25

2. Developing a Test Strategy..25
3. Data-Bus Test ...26
4. Address-Bus Test ...27
5. Memory-Chip Test...28
6. Designing the RAM Test ...29

a. Overview ..29
b. Circuit Under Test (RAM) ..32
c. Test Pattern Generator (Pattern)..32
d. Output Response Analyzer (Comparator)34
e. State Machine..35
f. Address Counter (Counter)...40
g. Test Controller (Top-Level Control Logic)41

7. Testing the Test ..47
8. Conclusions and RAM BIST Implementation47

C. READ-ONLY MEMORY TESTING ..48
1. State the Problem to be Solved ...50
2. Determine the Inputs and Outputs for the Test Device..................52
3. Define the States, Transitions and Outputs of Each State53
4. Determine the Computational Modules...54
5. Develop a Data Subsystem Module ..54

 vii

a. Registers ..55
b. Multiplexers...55

6. Develop the System Module ..57
7. Develop the Top Level Module ...58
8. Testing the Test ..59
9. Conclusions and ROM BIST Implementation59

D. FIELD-PROGRAMMABLE GATE ARRAY TESTING..........................60
1. Introduction..61
2. Interfacing with the Test ...61
3. The Test Process...62
4. The CLB Tests..64
5. The Interconnect Test..67
6. Conclusions and FPGA BIST Implementation69

IV. CONCLUSIONS AND FOLLOW-ON RESEARCH...71
A. OVERVIEW...71
B. CONCLUSIONS ..71
C. FOLLOW-ON RESEARCH...73

APPENDIX A: COMPLETE SCHEMATICS, VHDL CODES AND TEST-
BENCH WAVEFORMS FOR SDRAM TEST ...75
A. COMPLETE DESIGN ..76

1. Schematic Diagram..76
2. Test-Bench Waveform...77

B. PATTERN MODULE ...153
1. VHDL Code ..153
2. Test-Bench Waveform...165

C. COMPARATOR MODULE...170
1. Schematic Diagram..170
2. Test-Bench Waveform...171

D. STATE MACHINE MODULE...172
1. VHDL Code ..172
2. Test-Bench Waveform...196

E. ADDRESS COUNTER MODULE...203
1. Schematic Diagram..203
2. Test-Bench Waveform...204

F. COUNTER-CONTROL MODULE...212
1. VHDL Code ..212

G. COUNTER-DECODE MODULE ..215
1. VHDL Code ..215

H. COMPARE-ENABLE MODULE ..218
1. VHDL Code ..218

I. PASS-COUNTER MODULE ...220
1. Schematic Diagram..220

J. STATUS MODULE...221
1. VHDL Code ..221

 viii
K. TOP LEVEL CONTROL LOGIC MODULE ..222

1. Schematic Diagram..222

APPENDIX B: COMPLETE SCHEMATICS, VHDL CODES AND TEST-
BENCH WAVEFORMS FOR EPROM/PROM TEST..223
A. MULTIPLEXER MODULE...224

1. VHDL Code ..224
2. Test-Bench Waveform...225

B. ADDER MODULE ..226
1. VHDL Code ..226
2. Test-Bench Waveform...227

C. DATA MODULE ...228
1. Schematic Diagram..228
2. Test-Bench Waveform...229

D. CONTROL MODULE ..230
1. VHDL Code ..230
2. Test-Bench Waveform...233

E. SYSTEM MODULE ..234
1. Schematic Diagram..234
2. Test-Bench Waveform...235

F. COMPARATOR MODULE...236
1. Schematic Diagram..236
2. Test-Bench Waveform...237

G. TOP LEVEL MODULE..238
1. Schematic Diagram..238
2. Test-Bench Waveform...239

LIST OF REFERENCES..241

INITIAL DISTRIBUTION LIST ...245

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF FIGURES

Figure 1. Solar Radiation. (From Ref. [1].)...5
Figure 2. Example of Satellite Capture for On-Orbit Servicing. (After Ref. [10].)8
Figure 3. CFTP Conceptual Illustration. (After Ref. [4].)..10
Figure 4. Example Xilinx RADHARD Device Numbering. (From Ref. [18].)11
Figure 5. Example Intel Flash Memory Device Numbering. (From Ref. [20].)12
Figure 6. Example Xilinx ISP EPROM Device Numbering. (From Ref. [22].)13
Figure 7. Example Xilinx OTP PROM Device Numbering. (From Ref. [23].)13
Figure 8. CFTP Architecture. (From Ref. [4].) ..14
Figure 9. ESPA Configuration. (After Ref. [25].)..15
Figure 10. Basic BIST Architecture. (After Ref. [26].) ...18
Figure 11. BIST Conceptual Illustration. (After Ref. [4].)...20
Figure 12. Basic Memory Structure. ...23
Figure 13. Possible Wiring Problems..24
Figure 14. Proper Order of Memory-test Components. ..26
Figure 15. Block Diagram of the RAM Test...31
Figure 16. Pattern Module...33
Figure 17. Pattern Test-Bench Waveform...33
Figure 18. Comparator Module. ..34
Figure 19. Comparator Test-Bench Waveform...35
Figure 20. RAM Test State Machine...36
Figure 21. State Machine Module. ..38
Figure 22. State Machine Test-Bench Waveform. ..39
Figure 23. Counter Module. ..41
Figure 24. Counter Test-Bench Waveform. ..41
Figure 25. Counter-Control Module..42
Figure 26. Counter-Decode Module..43
Figure 27. Compare-Enable Module. ..43
Figure 28. Pass-Counter Module...44
Figure 29. Status Module. ...44
Figure 30. Control Logic Module..45
Figure 31. Complete RAM Test Design..46
Figure 32. General ROM Test Structure. (After Ref. [30].)..49
Figure 33. ROM Test Module. (After Ref. [29].)..52
Figure 34. ROM Test State Diagram...53
Figure 35. Control Module..53
Figure 36. Control Module Test-Bench Waveform. ...54
Figure 37. Adder Module. ...54
Figure 38. Data Subsystem Details. ..56
Figure 39. Data Module...56
Figure 40. Data Module Test-Bench Waveform. ..57
Figure 41. System Module. ...57

 xi

Figure 42. System Module Test-Bench Waveform...58
Figure 43. Checksum Module. ..58
Figure 44. Checksum Module Test-Bench Waveform..59
Figure 45. FPGA Architecture Overview. (From Ref. [21].)..60
Figure 46. Configuration Logic Block. (After Ref. [21].)...63
Figure 47. Basic Architecture for CLB Test. (After Ref. [26].)..65
Figure 48. Basic CLB Test Architecture across FPGA array..66
Figure 49. CLB Test Configurations for FPGAs. (After Ref. [26].)66
Figure 50. Basic Architecture for Interconnect Test Configuration. (After Ref. [26].)68

 xii

LIST OF TABLES

Table 1. Radiation Effects and Mitigation. (After Ref. [2].) ..6
Table 2. Radiation Effects and Mitigation Solutions Selected.7
Table 3. Summary of Advantages and Disadvantages of BIST. (From Ref. [26].)19
Table 4. Consecutive Data Values for the Sliding 1's Test..27
Table 5. “Power-of-Two” Addresses. ..28
Table 6. Data Values for an Increment Test. ...29
Table 7. RAM Test Patterns...32
Table 8. Description of the states used in the Memory Test..37
Table 9. Implementation Approaches for Control Subsystems. (After Ref. [30].)........49
Table 10. Example ROM contents. ..50
Table 11. External Data and Control Signals...51
Table 12. Fault Table for the XOR Gate. (After Ref. [3].) ..64
Table 13. Propagation D Cube for the XOR Gate. (After Ref. [3].)................................65

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

GLOSSARY
ASIC Application Specific Integrated Circuit

BIST Built-In Self-Test

BUT Block Under Test

C&DH Command and Data Handler

CFTP Configurable Fault-Tolerant Processor

CLB Configurable Logic Block

COTS Commercial-Off-The-Shelf

CPU Central Processing Unit

CUT Circuit Under Test

EDAC Error Detection And Correction

ELV Expendable Launch Vehicle

EPROM Erasable Programmable Read-Only Memory

ESPA Expendable Launch Vehicle (ELV) Secondary Payload Adapter

FPGA Field-Programmable Gate Array

I/O Input/Output

IOB Input/Output Block

ISP In System Programmable

LC Logic Cell

LUT Look Up Table

MeV Mega-electron Volt

MidSTAR-1 Midshipmen Science and Technology Application Research Mis-
sion 1

Mux Multiplexer

NPS Naval Postgraduate School

NPSAT1 Naval Postgraduate School Satellite Mission 1

ORA Output Response Analyzer

OTP One-Time Programmable

PCB Printed Circuit Board

PROM Programmable Read-Only Memory

RADHARD Radiation Hardened

rads Radiation Absorbed Dose

 xv

RAM Random Access Memory

ROM Read-Only Memory

SDRAM Synchronous Dynamic Random Access Memory

SEE Single Event Effect

SEL Single Event Latchup

SERB Space Experiments Review Board

SEU Single Event Upset

SOC System-On-A-Chip

TID Total Ionizing Dose

TMR Triple Modular Redundant

TPG Test Pattern Generator

VHDL Very High Speed Integrated Circuit Hardware Description Lan-
guage

WUT Wire Under Test

 xvi

ACKNOWLEDGMENTS

I would like to thank all of the professors, engineers, technicians, and students of

the Naval Postgraduate School who made not only this research possible but also made

my studies here at the Naval Postgraduate School a true educational experience. Many of

them may not realize the magnitude of their efforts, but the author does.

Special thanks are owed to these individuals for their support:

To Professors Loomis and Ross, your knowledge in Computer Engineering and

Space Systems has been inspiring.

To First Lieutenant Rong Yuan for your friendship, your willingness to answer

my never-ending questions, and for continuously reminding me that just because I speak

English doesn’t mean I know the English language.

To Professor Butler, for your impressive teaching methods and skills.

To Jim Lucier, thank you for the time we spent climbing the granite walls of Yo-

semite, the crumbling rock of the Pinnacles, the death defying Tyrolean traverse, and our

epic adventure up the Hobbit Book.

And most importantly, I wish to thank my family: Mari, Addy Mae, and Baxter.

Your patience, understanding, and support throughout this process have been a blessing.

Finally, I owe an extra thanks to my loving wife, for without her none of this would have

been possible.

 xvii

THIS PAGE INTENTIONALLY LEFT BLANK

 xviii

EXECUTIVE SUMMARY

With the complexity of digital systems, reliability considerations are important.

Being physical devices, digital circuits are subject to failures caused by faults. A fault is

defined as any change in a system that causes it to behave differently from the original

system. In digital systems, typical maintenance deals with detection, location, and repair

of any such faults.

In many digital systems it is desirable to continuously monitor, exercise and test

the system in order to determine whether the system is performing as desired. Such

monitoring may enable automatic detection of failures via periodic testing or through the

use of codes and checking circuits (e.g., built-in self-testing). In such systems, special

hardware and software must be incorporated in the system to obtain these reliability ob-

jectives. This thesis will address problems associated with testing a digital system to de-

tect and locate faults. Additionally, the thesis addresses the design of self-testing digital

systems in which faults can be automatically detected for key components of the digital

system.

While any complex system requires testing to ensure satisfactory performance,

satellite systems require extensive testing for two additional reasons: they operate in an

environment considerably different from that in which they were built and after launch

they are inaccessible to routine maintenance and repair. Because of these unique re-

quirements, a specific solution is required such as a self-contained, autonomous, self-

testing circuit. This Built-In Self-Test (BIST) provides a means to monitor and maintain

specific components remotely.

The focus of this thesis was on the design and development of a series of BISTs

for use with the Configurable Fault Tolerant Processor (CFTP) in space applications.

The results of this thesis are detailed designs for a Random Access Memory (RAM) BIST

and a Read-Only Memory (ROM) BIST, as well as a conceptual design for a Field Pro-

grammable Gate Array (FPGA) BIST. These designs are stored on board the CFTP and

are made to operate remotely and autonomously. Together, these BISTs provide a means

to monitor, exercise, and test the CFTP components and thus facilitate a reliable design.

 xix

The CFTP is an experiment being conducted at the Naval Postgraduate School

(NPS) that attempts to demonstrate flexibility achieved through reprogrammable and re-

configurable technology. The CFTP design incorporates Field Programmable Gate Ar-

rays (FPGAs) as a foundation for this flexibility. The CFTP is designed to combat the

three principal errors experienced in space environments: Total Ionizing Dose (TID),

Single Event Upset (SEU), and Single Event Latchup (SEL). Through careful component

selection, TID and SEL can be prevented, while a fault tolerant scheme is needed to miti-

gate SEUs. The CFTP’s fault-tolerant architecture is accomplished with a Triple-

Modular-Redundant design. In this design, three processors operate in lock step with a

majority voter evaluating each output, and correcting any errors induced from SEUs.

The BIST design is made up of multiple sub-designs, each designed to test a spe-

cific component of the CFTP. These additional designs are stored on board the CFTP

and are made to operate remotely and autonomously. In typical approaches of this fash-

ion, this additional circuitry translates to an overhead in the overall system design and

functionality. Fortunately, due to the reprogrammability of FPGA devices, the additional

circuitry required to incorporate a BIST can be maintained in the system’s configuration-

storage as one of many possible system configurations. Therefore, the area overhead and

performance penalties typically associated with traditional BIST approaches can be

avoided.

One of the components to be tested is the System-Memory, RAM, on board the

CFTP. Because it is necessary for the CFTP to store and retrieve information accurately

from its memory, proper physical and electrical operation of the memory components and

their interconnect is required. The RAM BIST uses a method of writing, reading and

verifying specific patterns to and from locations in the System-Memory.

Other components to be tested are the configuration-storage components,

EPROM/PROM and Flash Memory, on board the CFTP. When using FPGAs as a means

to replicate architecture and functionality, back-ups and variations of these configurations

need to be maintained in some form of a configuration-storage device. These devices can

be one of many forms of Read-Only Memory (ROM); the three selected for the CFTP are

EPROM, PROM, and Flash Memory. The ROM BISTs are identical and use a method of
 xx

calculating a checksum signature particular to the data stored in the respective devices

and comparing it to the correct signature.

The final components discussed are the FPGAs themselves. Because they are the

core of the CFTP design, proper operation of their internal and external characteristics is

critical. In this portion of the thesis, research is presented which explains the process of

dividing up the FGPA into groups and allowing one group to test another in a round-

robin fashion until all the groups have been tested. Furthermore, this chapter discusses

the building blocks of the FPGA and testing the Configurable Logic Blocks (CLBs), the

elements used in constructing representative logic, and testing the interconnect surround-

ing these logic blocks.

Further research is required to incorporate these designs into the board-level de-

signs for the CFTP development board, qualification board, and flight models. Each sys-

tem may require slight modifications for specific protocol requirements (e.g., handshakes,

timing, etc.). These BISTs are an excellent means to provide a functional baseline prior

to environmental testing for space flight qualification.

 xxi

THIS PAGE INTENTIONALLY LEFT BLANK

 xxii

I. INTRODUCTION

With the complexity of digital systems, reliability considerations are important.

Being physical devices, digital circuits are subject to failures caused by faults. A fault is

defined as any change in a system that causes it to behave differently from the original

system. In digital systems, typical maintenance deals with detection, location, and repair

of any such faults.

In many digital systems it is desirable to continuously monitor, exercise and test

the system in order to determine whether the system is performing as desired. Such

monitoring may enable automatic detection of failures via periodic testing or through the

use of codes and checking circuits (e.g., built-in self-testing). In such systems, special

hardware and software must be incorporated in the system to obtain these reliability ob-

jectives. This thesis will address problems associated with testing a digital system to de-

tect and locate faults. Additionally, the thesis addresses the design of self-testing digital

systems in which faults can be automatically detected for key components of the digital

system.

While any complex system requires testing to ensure satisfactory performance,

satellite systems require extensive testing for two additional reasons: they operate in an

environment considerably different from that in which they were built and after launch

they are inaccessible to routine maintenance and repair. Because of these unique re-

quirements, a specific solution is required such as a self-contained, autonomous self-

testing circuit. This Built-In Self-Test (BIST) provides a means to monitor and maintain

specific components remotely.

The focus of this thesis was on the design and development of a series of BISTs

for use with the Configurable Fault Tolerant Processor (CFTP) in space applications.

The results of this thesis are detailed designs for a Random Access Memory (RAM) BIST

and a Read-Only Memory (ROM) BIST, as well as a conceptual design for a Field Pro-

grammable Gate Array (FPGA) BIST. These designs are stored on board the CFTP and

1

are made to operate remotely and autonomously. Together, these BISTs provide a means

to monitor, exercise, and test the CFTP components and thus facilitate a reliable design.

The CFTP is an experiment being conducted at the Naval Postgraduate School

(NPS) that attempts to demonstrate flexibility achieved through reprogrammable and re-

configurable technology. The CFTP design incorporates Field Programmable Gate Ar-

rays (FPGAs) in conjunction with Erasable Programmable Read-Only Memory

(EPROM), Programmable Read-Only Memory (PROM), and Flash Memory as a founda-

tion for this flexibility.

The CFTP is designed to combat the three principal errors experienced in space

environments: Total Ionizing Dose (TID), Single Event Upset (SEU), and Single Event

Latchup (SEL). TID effects can be addressed by hardening or shielding the device

against radiation, while SELs can be dealt with by through fabrication processes. The

CFTP has taken a unique approach to mitigating SEUs by incorporating a Triple Modular

Redundancy (TMR) design. In this design, three processors operate in lock step with a

majority voter evaluating each output, and correcting any errors induced from SEUs.

Chapter 2 continues this discussion of the CFTP’s background, the underlying principles

behind its inception, as well as a description of the specific components selected and the

architecture which ties them together.

Chapter 3 begins the discussion of the BISTs and how they are incorporated into

the CFTP design, while the sections within describe in detail the individual BIST designs.

The BIST design is made up of multiple sub-designs, and each is designed to test a spe-

cific component of the CFTP. These additional designs are stored on board the CFTP

and are made to operate remotely and autonomously. In typical approaches of this fash-

ion, this additional circuitry translates to an overhead in the overall system design and

functionality. Fortunately, due to the reprogrammability of FPGA devices, the additional

circuitry required to incorporate a BIST can be maintained in the system’s configuration-

storage as one of many possible system configurations. Therefore, the area overhead and

performance penalties typically associated with traditional BIST approaches can be

avoided.

2

The first BIST design described in Chapter 3 is the RAM BIST. One of the CFTP

components to be tested is the System-Memory, RAM, on board the CFTP. Because it is

necessary for the CFTP to store and retrieve information accurately from its memory,

proper physical and electrical operation of the memory components and their intercon-

nect is required. The RAM BIST uses a method of writing, reading and verifying spe-

cific patterns to and from locations in the System-Memory.

The next section of Chapter 3 describes the ROM BIST. After the System-

Memory, other components to be tested are the configuration-storage components,

EPROM/PROM and Flash Memory, on board the CFTP. When using FPGAs as a means

to replicate architecture and functionality, back-ups and variations of these configurations

need to be maintained in some form of a configuration-storage device. These devices can

be one of many forms of Read-Only Memory (ROM); the three selected for the CFTP are

EPROM, PROM, and Flash Memory. The ROM BISTs are identical and use a method of

calculating a checksum signature particular to the data stored in the respective devices

and comparing it to the correct signature.

The final BIST discussed in Chapter 3 is the FPGA BIST. Because the FPGAs

are the core of the CFTP design, proper operation of their internal and external character-

istics is critical. In this portion of the thesis, research is presented which explains the

process of dividing up the FGPA into groups and allowing one group to test another in a

round-robin fashion until all the groups have been tested. Furthermore, this chapter dis-

cusses the building blocks of the FPGA and testing the Configurable Logic Blocks

(CLBs), the elements used in constructing representative logic, and testing the intercon-

nect surrounding these logic blocks.

Finally, Chapter 4 brings to light some conclusions as well as needed research.

Further research is required to incorporate these designs into the board-level designs for

the CFTP development board, qualification board, and flight models. Each system may

require slight modifications for specific protocol requirements (e.g., handshakes, timing,

etc.). These BISTs are an excellent means to provide a functional baseline prior to envi-

ronmental testing for space flight qualification.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

II. CONFIGURABLE FAULT TOLERANT PROCESSOR DESIGN

In order to give context to this thesis, a brief discussion of the Configurable Fault

Tolerant Processor (CFTP) design is required. This discussion includes key issues with

space environments and their source for errors in logical circuits, as well as the method in

which CFTP deals with these concerns. Additionally, this chapter describes the design

framework, solution, and the state of the CFTP to date.

A. BACKGROUND
Close to the earth’s surface, within the atmosphere, electrical circuits are shielded

from many of the effects of space, like radiation. Leaving the earth’s atmosphere, a cir-

cuit is exposed to an environment heavily populated by high-energy ions [1].

Figure 1. Solar Radiation. (From Ref. [1].)

5

1. Effects
These high-energy ions cause several types of errors to occur in electrical circuits.

Two principal types of errors or failures the CFTP addresses are Total Ionizing Dose

(TID) and Single Event Effects (SEE) [2]. Total Ionizing Dose effects contribute to the

deterioration of a device over time. A Single Event Effect is any measurable effect to a

circuit due to a single ion strike. Single Event Effects include Single Event Latchup

(SEL) and Single Event Upset (SEU) [2]. Single Event Latchup is a condition that may

result in the potentially permanent loss of device functionality due to a single-event-

induced high-current state. SEU is a condition that may result in the unwanted change of

value in a memory cell due to a charge absorbed into the device body.

2. Solution
Table 1 summarizes the principal effects of radiation on electronic circuits along

with several methods that can be employed to combat those effects. First, TID effects are

typically addressed with Radiation-Hardened (RADHARD), Radiation-Tolerant, or

shielded devices [2]. Second, SELs can be dealt with by either fabricating devices on an

epitaxial substrate or incorporating guard-ring or dielectric-isolation processes [2, 3].

Third, SEUs can be addressed through many different fault-tolerant schemes such as Tri-

ple Modular Redundancy (TMR), Quadded Logic, or Software Fault Tolerance [3].

Radiation Effect Mitigation Techniques

Total Ionizing Dose Radiation Hardening
Shielding

Single Event Latchup (SEL)
Epitaxial Substrate
Guard-Ring
Dielectric-Isolation

Single Event Upset (SEU)
TMR
Quadded Logic
Software Fault Tolerance

Table 1. Radiation Effects and Mitigation. (After Ref. [2].)

Table 2 provides the solution that the CFTP uses to mitigate all these effects: Ra-

diation Hardening for key devices, fabrication of these on epitaxial substrates, and incor-

porating Triple Modular Redundancy [4].

6

Radiation Effect Mitigation Techniques
Total Ionizing Dose Radiation Hardening
Single Event Latchup (SEL) Epitaxial Substrate
Single Event Upset (SEU) TMR

Table 2. Radiation Effects and Mitigation Solutions Selected.

While these techniques provide a solution, there are trade-offs in the form of per-

formance, cost, and availability [4]. The following section will discuss these trade-offs as

well as the basis of the CFTP technology, re-programmability.

B. CONCEPT
The primary objectives in developing the Configurable Fault Tolerant Processor

(CFTP) were three-fold [5, 6]. First, the CFTP was to demonstrate the applicability of a

reconfigurable, fault-tolerant System-On-a-Chip (SOC)1 for space-based applications.

Second, the CFTP was to demonstrate the use of reprogrammable technology in space-

craft architectures. Third, the CFTP must provide a reliable design to accomplish these

reprogramming and reconfiguration objectives. The CFTP design was centered on a re-

configurable system instead of an Application-Specific Integrated Circuit (ASIC). Cus-

tom built, ASICs are expensive and inflexible. Furthermore, TID and SEL mitigation

must be applied after the ASIC is designed. By utilizing reprogrammable devices that of-

fer design flexibility, CFTP can provide faster design cycles and lower costs [7, 8].

These benefits in time, money, and effort are tremendous, especially by providing a sys-

tem with on-orbit upgradeability and reconfigurability. Using this technology in space-

craft architectures decreases development time, decreases costs, and increases reliability

as well as flexibility in hardware development and implementation [7, 8].

Radiation-Hardened (RADHARD) parts, due to the exacting fabrication require-

ments and the processes involved to harden the devices are by their very nature slower,

larger, and more expensive than their commercial equivalents [4]. Because of this,

RADHARD parts lag current technology and are possibly years old by the time of

launch. While this holds true to some extent for RADHARD Field-Programmable Gate

1 An integrated embedded computer system on a single chip. In the context of SRAM-based FPGAs,

this usually discounts an external FPGA configuration ROM and external RAM.

7

Arrays (FPGAs) too, there is an exception. Because FPGAs are designed to be repro-

grammable, they are generic in their design and not application specific. So while the

process to fabricate a RADHARD FPGA may be involved and costly, they are still

somewhat readily available and technologically current. Therefore, a system designed to

incorporate RADHARD FPGAs can harness the radiation mitigation benefits of a

RADHARD device as well as the availability and technology of non-RADHARD de-

vices. Additionally, the inherent reprogrammability and reconfigurability FPGAs bring

to the CFTP provide a medium for updateable architectures in space applications.

Today, once a satellite is in orbit making hardware changes is almost always im-

possible. Because of this, many research facilities have been searching for methods to

provide on-orbit satellite servicing. Solutions range from physically visiting the satellite

with an autonomous servicing satellite, as with the Orbital Express program and seen in

Figure 2, to utilizing proven, reliable uplink communications, as with the CFTP [9, 10].

The CFTP program is breaking ground in on-orbit servicing using reconfigurable logic

and uploading programmable modifications via command and control communications.

If successful, tremendous flexibility will be achieved. The CFTP could be reconfigured

on-orbit to correct errors, meet dynamic mission requirements, upgrade, or serve as back-

up devices to several on-board systems.

Figure 2. Example of Satellite Capture for On-Orbit Servicing. (After Ref. [10].)

8

The CFTP program has evolved over the years and across numerous graduate re-

searchers. It has evolved from its beginnings as an investigation into fault-tolerant com-

puting techniques into an exploration of the applicability, design and testing of using re-

programmable and reconfigurable technology in space-based applications and is detailed

in References [2, 4, 11-16]. These individual theses have sought to solve unique research

questions, and have cumulatively established a significant number of design constraints.

The design was framed around using Field-Programmable Gate Arrays (FPGA) as a basis

for a SOC design, implementing a TMR-voting scheme for fault-tolerance, using a 16-bit

or 32-bit processor softcore2, maximizing the use of Commercial Of The Shelf (COTS)

technology, and introducing real-time on-orbit reconfigurability. The physical design

constraints are a Printed Circuit Board (PCB) 5.3 x 7.3 inches, with a slightly modified

PC104 Bus interface, using FPGA and COTS devices, all with a targeted maximum

power consumption of 11 Watts or less [17].

Figure 3 is a conceptual illustration of the CFTP design on a PCB and, while it is

not a true SOC, it is close with a total chip count of 13. Of these 13 chips, eight are

memory chips, two are FPGAs, two are power converters, and one is an oscillator [4].

The Processor FPGA is the large block in the top left (FPGA 2 - containing the TMR

scheme outlined within it) and the Controller FPGA is in the lower left (FPGA 1 - con-

taining the configuration control, command and status registers, bus interface logic, etc.).

On the right side of the image are the System-Memory, configuration memory, and left-

over discrete components such as capacitors, resistors, etc. On-orbit, the CFTP will op-

erate with either a triple-redundant softcore or multiple other programmable modules to

test the configurability and reconfigurability of the system.

2 Softcore describes the concept of implementing electronic hardware in computer code.

9

Figure 3. CFTP Conceptual Illustration. (After Ref. [4].)

The CFTP’s radiation tolerance and latchup mitigation are accomplished by se-

lecting RADHARD FPGAs which are fabricated on an epitaxial substrate for both the

Processor and Controller FPGAs, RADHARD Read-Only Memory (ROM) for the Con-

troller FPGA’s configuration-storage device, Flash Memory with a proven radiation per-

formance for the Processor FPGA’s configuration storage-device, Synchronous Dynamic

RAM (SDRAM) from a tested and qualified batch for the System-Memory, and perform-

ance-proven devices commonly used in the space industry for the power converters, os-

cillator, and discrete components [4]. While the FPGAs are hardened to the effects of

TID and SEL, these mitigation efforts do not protect the system from SEUs. As previ-

ously mentioned, SEUs must be addressed through some form of a fault-tolerant scheme.

10

The CFTP’s fault-tolerant architecture is accomplished with a Triple-Modular-

Redundant design. In this design, three processors operate in lock step with each output

voted on. If a conflict is found among the three processors (in this case due to an SEU-

driven error), an interrupt routine saves and reloads the faulty processor with the correct

data from the other two, as opposed to traditional methods of resetting the processors to a

“trusted” state (re-initialize/re-boot/re-format) which results in a potentially significant

amount of data loss [15]. Error-Detection-And-Correction (EDAC) circuitry is used for

single-bit-error correction and double-bit-error detection of data errors in the System-

Memory [4]. By incorporating both TMR and EDAC into the CFTP architecture, the sys-

tem can correct for any errors due to SEUs.

C. COMPONENTS
The main components of the CFTP design are the Processor FPGA, Controller

FPGA, Configuration Storage, and System-Memory [4]. The devices selected for the

Processor and Controller FPGAs are the Xilinx XQVR600-4CB228M FPGA (Figure 4

shows the part number information) [4, 18]. This device provides a gate count of

661,111, is guaranteed RADHARD for 100 krad of TID, SEL immune, and comes in a

228-pin ceramic quad flat package [18, 19]. The total number of bits required to config-

ure each FPGA is 3,607,968 bits [21].

Figure 4. Example Xilinx RADHARD Device Numbering. (From Ref. [18].)

11

For their radiation performance, the Intel TE28F320C3BA 32-Mbit Flash Memory was

chosen to store all of the Processor FPGAs configurations (Figure 5 shows the part num-

ber information) [4, 20]. At 32-Mbits and 3,607,968 bits per configuration, the Intel

Flash Memory is capable of holding up to eight configurations [21].

Figure 5. Example Intel Flash Memory Device Numbering. (From Ref. [20].)

Two arrangements were chosen for the Controller FPGA’s configuration-storage device,

an Erasable Programmable Read-Only Memory (EPROM) and a Programmable Read-

Only Memory (PROM). The former device, a Xilinx XCV18V04 ISP EPROM that is In-

System Programmable, is used during development to allow for changes to be made to

the Controller FPGA’s configuration (Figure 6 shows the part number information) [4,

22]. At 4-Mbits and 3,607,968 bits per configuration, the ISP PROM is capable of hold-

ing one configuration [21]. The latter, a Xilinx XQR17V16 OTP PROM which is

RADHARD and One-Time Programmable, will be used in the final Flight model (Figure

7 shows the part number information) [4, 23]. At 16-Mbits and 3,607,968 bits per con-

figuration, the OTP PROM is capable of holding up to four configurations [21].

12

Figure 6. Example Xilinx ISP EPROM Device Numbering. (From Ref. [22].)

Figure 7. Example Xilinx OTP PROM Device Numbering. (From Ref. [23].)

A batch of Hitachi (now Elpida) HM5225405B-75/A6/B6 Synchronous Dynamic RAM

(SDRAM), with a proven record of greater than 40 krad TID and an SEL threshold of

46.5 MeV-cm2/mg, was provided by SEAKR Engineering [4]. These memory chips are

used for the CFTP System-Memory and provide 256-Mbits of SDRAM organized as

16,777,216 words by 4-bits by 4 banks in a standard 54-pin plastic TSOP II [24].

D. ARCHITECTURE
Putting it all together, Figure 8 shows the basic architecture of the CFTP [4]. In

its default configuration, the data paths flow as follows. First, power on/reset initiates

configuring the Controller FPGA from the EPROM/PROM. Second, the Controller

sends status through the PC104 onto the bus and receives commands and data. The Con-

troller initiates configuring the Processor FPGA from the Flash Memory through the

13

Controller. From the Processor FPGA, data can be stored and retrieved from the System-

Memory. Additional data paths have been incorporated to allow for future design flexi-

bility. These allow for additional flow of data between FPGAs, into the EPROM and

from the PC104 Bus [4].

Figure 8. CFTP Architecture. (From Ref. [4].)

14

E. CFTP STATUS
In 2002, the CFTP project was presented to both the Navy and DoD Space Ex-

periments Review Board (SERB) and was selected for space flight and manifested on two

satellites: Midshipman Space Technologies Applications Research (MidSTAR-1) and

Naval Postgraduate School Satellite (NPSAT1). Both satellites are currently scheduled to

launch in September of 2006 into a Low Earth Orbit. Figure 9 shows the launch configu-

ration, with both satellites mounted via an Expendable Launch Vehicle (ELV) Secondary

Payload Adapter (ESPA) [25]. As a result, both satellites will release into relatively simi-

lar orbits and are expected to provide very comparable data. In 2003, the CFTP Project

has already attended the Navy SERB and the DoD SERB seeking a flight that will subject

CFTP to a higher degree of radiation exposure [5, 6].

Figure 9. ESPA Configuration. (After Ref. [25].)

15

F. CHAPTER SUMMARY
This Chapter provided background information significant to the design process

of the CFTP. Fundamental to the design goals for the CFTP are the concepts of immu-

nity from the effects of a space environment, designing a system with a reconfigurable

and reprogrammable architecture, and maximizing reliability.

With an understanding of the design and the components involved, the next chap-

ter focuses on the system’s functionality. Chapter III explores the design of a hardware

self-test which the CFTP can utilize to test components and their interconnections in or-

der to determine whether a device or the system as a whole is faulty or fault-free.

16

III. BUILT-IN SELF-TEST

This chapter presents an introduction to the Built-In Self-Test (BIST), including

what it is and how it works, as well as the actual tests themselves. The intent is to estab-

lish the basic principles used in designing the BIST and then present the resulting self-

test.

A. AN INTRODUCTION TO BIST
This Section begins with an explanation of the BIST concept, its basic architec-

ture, as well as the primary advantages and disadvantages of incorporating this self-test

design into a system.

1. What is BIST?
BIST, in its simplest form, is a circuit that tests itself to determine if it is fault-free

or faulty [3]. Usually this entails incorporating additional circuitry and functionality into

the design of the circuit in order to accomplish the self-testing aspect. This additional

circuitry and functionality must generate test patterns and provide a means to analyze the

output response [26]. The output responses of the Circuit Under Test (CUT) must corre-

spond to the test patterns in order to pass as a fault-free circuit.

Fortunately, due to the reprogrammability of FPGA devices, the additional cir-

cuitry required to incorporate a BIST can be maintained in the system’s configuration-

storage as one of many possible system configurations (also known as off-line testing)

[26]. Therefore, the area overhead and performance penalties typically associated with

traditional BIST approaches can be avoided. As discussed in Chapter II, the CFTP de-

sign includes Flash Memory and EPROM/PROM that are programmed with a variety of

configurations. Therefore when it is desired to operate the BIST, an FPGA can be recon-

figured with the BIST configuration. Once the testing is complete, the CFTP can be re-

programmed to operate with one of multiple system functionalities. In doing so, the

BIST is achieved with no area overhead or performance penalty to the system’s function-

ality.

17

2. Basic Architecture
The block diagram in Figure 10 represents the basic architecture of the BIST cir-

cuitry. The BIST architecture includes the Test Pattern Generator (TPG), the Output Re-

sponse Analyzer (ORA), and the Test Controller. The TPG produces a sequence of pat-

terns, the ORA tests the output responses and produces a Pass/Fail signal, and the Test

Controller initializes the BIST and maintains the operation of the self-test. Additionally,

the BIST may require signals for starting the sequence (BIST Start), reporting the results

(Pass/Fail), or reporting the completion of the sequence (BIST Done).

Figure 10. Basic BIST Architecture. (After Ref. [26].)

3. Advantages and Disadvantages

Table 3 lists some advantages and disadvantages typical to most BIST applica-

tions. Case studies have confirmed, however, that the advantages of BIST routinely

make up for the disadvantages [26]. The studies have shown that these results are par-

ticularly true when the BIST is an off-line test routine (negating the increase in chip area

and performance penalties). The remaining savings must address the additional design

effort and project risk. The studies show that once the products are in the field and opera-

tional, the device may undergo repeated testing over time; the development testing ac-

counts for only a small portion of the total tests run during the system’s life-cycle [26].

18

Advantages Disadvantages

Vertical Testability (wafer to system) Area overhead

High diagnostic resolution Performance penalties

At-speed testing Additional design time and effort

Reduced need for external test equipment Additional risk to project

Reduced test development time and effort

More economic burn-in testing

Reduced manufacturing test time and cost

Reduced time-to-market

Table 3. Summary of Advantages and Disadvantages of BIST. (From Ref. [26].)

Additionally, BISTs provide an advantage specific to FPGAs and other program-

mable devices. That is, if the locations of faults in the FPGA can be determined, then the

FPGA can be reconfigured to avoid the faults when it is later reprogrammed. However,

BISTs also have a disadvantage specific to these devices. Systems with these compo-

nents rely on stored programs to define them. Incorporating BISTs require dedicating

one or more of these stored programs to testing, leaving less for the overall system func-

tions.

4. The CFTP Self-Tests

19

As discussed in Chapter II (and shown in Figure 11), the CFTP consists of 13

chips: eight memory chips, two FPGAs, two power converters, and one oscillator. The

focus of the BIST developed here is on the eight memory chips and two FPGAs. Of the

eight memory chips, six are System-Memory (i.e., RAM) and the remaining two are con-

figuration-storage devices for the Controller and Processor FPGAs (i.e., PROM/EPROM

and Flash Memory). The BISTs contain operations specific to each type of component

and are divided into three independent tests: RAM BIST (System-Memory), ROM BIST

(configuration-storage memory), and FPGA BIST (both FPGAs). The test sequence for

these BISTs follows the order: FPGA BIST, ROM BIST, and then RAM BIST. This will

allow for assurance in the FPGAs prior to loading them with the ROM BIST. Finally,

once the PROM/EPROM and Flash Memory functionalities are confirmed, the RAM

BIST configuration can be loaded.

Figure 11. BIST Conceptual Illustration. (After Ref. [4].)

The objective behind creating the BIST is two-fold. First, in development, the

CFTP needs a functional test to verify its mechanical and electrical performance. This

functional test is performed at ambient temperature and pressure conditions prior to any

simulated space environmental tests in order to establish a performance baseline. After

being subjected to the required environments, additional functional tests are conducted to

determine the impact of the environments on the CFTP. This process is used to qualify

the CFTP design for spaceflight [27]. Second, once the CFTP is on orbit and separated

20

from the development laboratory environment, a means is needed to diagnose the hard-

ware and its interconnect. Because the CFTP is based on a reprogrammable, reconfigur-

able design, the physical condition of the system is critical to CFTP’s functionality.

Therefore, while on-orbit at power-on/reset or when the system becomes suspect, the

BIST provides a method to diagnose any faults that occur due to launch or on-orbit envi-

ronmental conditions.

The following sections detail each portion of the BIST design and how they ad-

dress the hardware self-test for each component; specifically, determining if the CUT

(i.e., RAM, PROM, EPROM, Flash Memory, or FPGA) is faulty or fault-free.

B. RANDOM ACCESS MEMORY TESTING
Once the prototype CFTP is ready, assurance that RAM components are wired

correctly is needed. Additionally, during initial operations in space, confirmation that the

various memory chips are working properly is also needed, as the launch environment or

radiation effects may have altered their operation. It may also be desired to test the RAM

each time the system is powered-on or reset. Correct operation of the RAM components

is needed to provide reliable System-Memory for the CFTP system.

At first, developing a Random Access Memory (RAM) test seems like a fairly

simple task. However, a look at the problem more closely proves that it can be difficult

to detect subtle memory problems with a simple test. In fact, it is tempting to mistakenly

test only for internal memory failures and neglect other possible connections to memory

problems.

The purpose of RAM testing is to confirm that each storage location in a memory

chip is working. In other words, if a value is stored at a particular address, it is expected

to find that value stored there until another value is written to that same address. The

idea behind the memory test, then, is to write some set of data to each address in the

memory chip and verify the data by reading it back. If all the values read back are the

same as those that were written, then the memory chip is said to pass the test. Careful se-

lection of the set of data values must be made to insure that a passing result is meaning-

ful.

21

Unfortunately, this type of Memory-test is destructive. The process of testing the

memory causes one to overwrite its contents. Since it is not desired to overwrite the con-

tents of nonvolatile memories (i.e., configuration-storage), these tests can only be used

for RAM testing.

1. Memory Problems
Before implementing any test algorithms, the types of memory problems that are

likely to occur need to be identified. Because the manufacturers of memory chips per-

form a variety of post-production tests on each batch of chips, if there is a problem with a

particular batch, it is extremely unlikely that one of the bad chips will make its way into

our system.

The one type of memory chip problem that may be encountered is one due to

launch or space environment conditions. On-orbit and space-based applications must

consider the effects that the space environment may have on electrical components. If a

high-energy charged particle penetrates a susceptible portion of the memory structure

shown in Figure 12, it may produce adverse affects on the expected functionality. In

short, a Single Event Upset (SEU) could affect the memory chip itself or the memory

controller in the FPGA. Additionally, the memory chip’s physical connection to the

Printed Circuit Board (PCB) may be altered as a result of the launch or on-orbit environ-

ment also affecting the expected functionality.

22

Figure 12. Basic Memory Structure.

A problem encountered with the internal working of the memory chip itself is a

catastrophic failure. Any sort of physical or electrical damage to the chip would cause

this. An internal memory failure will affect a large portion of the chip and therefore

should be detected by any decent test algorithm. Therefore, the goal of the Memory-test

is to be able to detect internal memory failures without specifically looking for them.

A more probable source of actual memory problems will be the memory-to-FPGA

interconnect. The following is a look at the interconnect problems in more detail.

a. Electrical Wiring Problems
An electrical wiring problem can be caused by an SEU altering the inter-

face configuration or actual data being transferred. Each of the wires that connect the

memory chip to the processor is one of three types: an address line, a data line, or a con-

trol line. The address and data lines are used to select the memory location and to trans-

fer the data, respectively. The control lines tell the memory chip whether the processor

wants to read or write the location and precisely when the data will be transferred.

23

Unfortunately, one or more of these wires could be altered in such a way that it is either

shorted (i.e., connected to another wire in the circuit) or open (not connected to any-

thing). Both cases are illustrated in Figure 13.

Figure 13. Possible Wiring Problems.

Problems with the electrical connections to the processor will cause the

memory chip to behave incorrectly. Data may be stored incorrectly, stored at the wrong

address, or not stored at all. Each of these symptoms can be explained by wiring prob-

lems on the data, address, and control lines, respectively.

If the problem is with a data line, either several data bits may appear to be

“stuck together” (i.e., two or more bits always contain the same value, regardless of the

data transmitted) or a data bit may be “stuck-at-one” (always 1) or “stuck-at-zero” (al-

ways 0). These problems can be detected by writing a sequence of data values designed

to test that each data pin can be set to 0 and 1, independently of all the others.

24

If the problem is with an address line, the contents of two memory loca-

tions may appear to overlap. In other words, data written to one address will actually

overwrite the contents of another address instead. This happens because an address bit

that is shorted or open will cause the memory chip to see a different address than the one

selected by the processor.

Another possibility is that one of the control lines is shorted or open. Un-

fortunately, if there is a problem with a control line, the memory will probably not work

at all, and this will be detected by all of the memory tests.

b. Chip Connection Problems
If a memory chip connection is affected, the system will usually behave as

though there is a wiring problem or a missing chip. In other words, some number of the

pins on the memory chip will either not be connected to the PCB at all or will be con-

nected at the wrong place. These pins will be part of the data bus, address bus, or control

wiring. So as long as the test checks for wiring problems, any improperly connected

chips will be detected automatically.

2. Developing a Test Strategy

RAM testing must be able to detect both internal and interconnect errors. Internal

errors will probably be catastrophic in nature and will be detected by any test. A more

likely source of problems is the memory interconnect, where a wiring problem may occur

or a memory chip may be improperly connected.

By carefully selecting the pattern and the order in which the addresses are tested,

it will be possible to detect all of the memory problems described above. By also break-

ing the RAM testing into small pieces, the efficiency of the overall test and the diagnosi-

bility of the schematics/code will be improved.

Three individual RAM tests will be used: a Data-Bus test, an Address-Bus test,

and a Memory-Chip test. The first two test for electrical wiring problems, while the third

is intended to detect catastrophic failures. As an unintended consequence, the Memory-

Chip test will also uncover problems with the control bus wiring, though it cannot pro-

vide useful information about the source of such a problem.

25

The order in which these three tests are executed is important. As depicted in

Figure 14, the proper order is: Data-Bus test first, followed by the Address-Bus test, and

then the Memory-Chip test. This is because the Address-Bus test assumes a working data

bus, and the Memory-Chip test results are meaningless unless both the address and data

buses are known to be good. If any of the tests fail, the data value or address at which the

test failed will help isolate the problem.

Figure 14. Proper Order of Memory-test Components.

3. Data-Bus Test
The first test is the Data-Bus test. This test should confirm that the memory chip

correctly receives any value placed on the data-bus by the processor. The most obvious

test is to write all possible data values and verify that the memory chip stores each one

successfully. However, that is not the most efficient way to test the data bus. A faster

method is to test the bus one bit at a time. The data-bus passes the test if each data bit

can be set to 0 and 1, independently of the other data bits.

To test each bit independently a method called the “sliding ones test” will be per-

formed [28]. Table 4 shows the data patterns used in 8-bit and 24-bit versions of this test.

The name of this test, sliding ones, comes from the fact that a single data bit is set to one

and it “slides” through the entire data word. The number of data values to test is the

26

same as the width of the data bus. This reduces the number of test patterns from 2n to n,

where n is the width of the data bus.

Test Pattern 8-Bit Binary
Pattern

24-Bit Hex
Pattern

1 0000 0001 0000 0001
2 0000 0010 0000 0002
3 0000 0100 0000 0004
4 0000 1000 0000 0008
5 0001 0000 0000 0010
6 0010 0000 0000 0020
7 0100 0000 0000 0040
8 1000 0000 0000 0080
… … …
24 NA 0080 0000

Table 4. Consecutive Data Values for the Sliding 1's Test.

Since only the data-bus is being tested at this point, all of the data values can be

written to the same address. Any address within the memory chip will do.

To perform the sliding ones test, the first data value in the table is written, read

back and verified, the second value is written, read and verified, etc. When the end of the

table is reached, the test is completed. If the data test fails, it will return the data value

for which the test failed. The bit that is set in the returned value corresponds to the first

faulty data line, if any.

4. Address-Bus Test

After confirming that the data-bus works properly, the next test is the Address-

Bus test. As mentioned earlier, address-bus problems lead to overlapping memory loca-

tions. There are many possible addresses that could overlap. However, it is not neces-

sary to check every possible combination. Instead, following the example of the Data-

Bus test, each address bit will be isolated during testing. Then the test will verify that

each of the address pins can be set to zero and one without affecting any of the others.

The smallest set of addresses that will cover all possible combinations is the set of

“power-of-two” addresses [28]. These addresses are analogous to the set of data values

27

used in the sliding ones test. The corresponding memory locations are 00001h, 00002h,

00004h, 00008h, 00010h, 00020h, etc. (see Table 5). In addition, address 00000h must

also be tested. The condition of overlapping locations makes the Address-Bus test harder

to implement. After writing to one of the addresses, the test must check that none of the

others have been overwritten.

8-bit Hex Address 8-bit Binary Address
00h 0000 0000
01h 0000 0001
02h 0000 0010
04h 0000 0100
08h 0000 1000
10h 0001 0000
20h 0010 0000

Table 5. “Power-of-Two” Addresses.

To confirm that no two memory locations overlap, the test will first write some

initial data value at each power-of-two address within the memory chip (e.g., 1010 1010

or AAh). Then a new value, an inverted copy of the initial value, is written to the first

test address (e.g., 0101 0101 or 55h), and verified that the initial data value is still stored

at every power-of-two address. If a location is found, other than the one just written to,

that contains the new data value, a problem with the current address bit has been found.

If the Address-Bus test fails, the address at which the error was detected will be returned.

5. Memory-Chip Test
Once the address and data-bus wiring are verified as working, it is necessary to

test the integrity of the memory chip itself. Every bit in the memory chip must be tested

to see if it is capable of holding both zero and one. This is a fairly straightforward test to

implement, but takes significantly longer to execute than the previous two.

For a complete Memory-Chip test, the test must visit (write and verify) every

memory location twice [28]. Any data value can be chosen for the first pass, so long as

the test inverts that value during the second. A simple example is an “increment test” and

“decrement test.”

28

The 24-bit data values for an increment test are shown in the first two columns of

Table 6. The third column shows the inverted data values used during the second pass of

the test. The latter represents a decrement test.

Note that the memory locations are offset from the increment values. Because

each memory location is verified/read immediately following the corresponding write, it

is possible that the data read back would be just the voltage remaining on the data-bus

from the previous write [28]. If this occurs, it will appear as though the data has been

correctly stored in memory. In fact, the memory chip could be completely disconnected

and the test would still appear successful. By selecting a set of data that changes with the

address but is not equivalent to that address, this can be prevented. If the Memory-Chip

test fails, the address containing an incorrect data value is returned.

Memory Offset Binary Value Inverted Value
00h 000001 111110
01h 000010 111101
02h 000011 111100
03h 000100 111011
...

3Eh 111111 000000
3Fh 000000 111111

Table 6. Data Values for an Increment Test.

6. Designing the RAM Test
With the basic theory behind the RAM self-test presented previously, the remain-

der of this section will discuss the development of the programmable System-Memory

self-test circuit implemented within an FPGA.

a. Overview
The block diagram in Figure 15 is the RAM test circuit which is imple-

mented within an FPGA for testing of CFTP’s multiple SDRAM (System-Memory)

chips. The precise location and mode of a detected memory failure is stored in a Status

Register, which is routed directly to output pins. These output pins are connected from

the Processor FPGA to the PC104 Bus through the Controller FPGA. This data is avail-

29

able immediately after an Output Response Analyzer (ORA) module (e.g., the Compara-

tor) triggers the fail signal. Any time the expected data does not match the actual data

registered in the Comparator, the device asserts a fail flag, FLAG; this fail signal is also

ported to an output pin.

A single clock is used to toggle through the System-Memory addresses

and control the reading, writing and evaluation of data.

Once invoked, an external reset signal, RESTART, will restart the Mem-

ory-test into the first test state. During the reset state, the test State Machine will remain

in a wait state with all internal registers set to zero.

A pass signal will be directly connected to an output pin. The pass signal,

PASS_ENABLE, will become enabled upon completion of the entire test cycle. A

counter will store the number of Memory-test cycles that the memory has been able to

pass without failure.

30

Figure 15. Block Diagram of the RAM Test.

31

b. Circuit Under Test (RAM)
All six of the 16-Mbit x 4-bit SDRAM banks are cascaded into a 16-Mbit

x 24-bit RAM module. All data-multiplexing logic is contained in this module. In each

test, data is written to specific addresses in the SDRAM array and checked some clock

cycles later (depending on the test) for correctness in the Comparator.

c. Test Pattern Generator (Pattern)
The three different 24-bit words listed in Table 7 are written to the RAM

array and read back some time later at various times during the RAM Test. The different

patterns are generated in a Test Pattern Generator (TPG) module called Pattern and are

selectively applied to the RAM array depending on the current test state.

Pattern 1 Sliding 1s

Pattern 2 AAAAAAh

Pattern 3 555555h

Table 7. RAM Test Patterns.

The Pattern module, shown in Figure 16 (see Appendix A for complete in-

ternal schematics and VHDL code), consists of three inputs (clock, state, restart, and

flag) and two outputs (test_data and write_data). The clock pin is connected to the single

clock used for the whole system and the restart pin is connected to system’s external re-

set signal. The flag pin is connected to the Comparator and is used to notify the Pattern

module that a test has failed. The 8-bit state bus is connected to the State Machine mod-

ule and is used by the Pattern module to base decisions on which pattern from Table 7 to

output. The two outputs test_data and write_data are connected to the Comparator and

RAM, respectively, and carry the generated output pattern.

32

Figure 16. Pattern Module.

The three partial Test-Bench waveforms shown in Figure 17 (see Appen-

dix A for a complete Test-Bench waveform) demonstrate the module’s ability to output

varying patterns for varying tests based on the current state. Figure 17(a) shows the slid-

ing-ones pattern during the Data-Bus test being written and read back, then written and

read back, etc. Figure 17(b) demonstrates the module writing an initial pattern to mem-

ory, then an inverted pattern, and finally a pattern to compare when data is read back

from memory. Lastly, Figure 17(c) shows the module writing and reading a pattern then

writing and read another pattern; therefore, performing a write and read twice at each

location.

(a) Data-Bus-Test Example

(b) Address-Bus-Test Example

(c) Memory-Chip-Test Example

33
Figure 17. Pattern Test-Bench Waveform.

d. Output Response Analyzer (Comparator)
The module entitled Comparator is designed to compare a 24-bit word

which is read from the RAM to the same test data word which was written to the RAM

address some clock cycles earlier (again depending on the test). Whenever a fault is de-

tected during one of the test states, the fail flag is asserted. As long as the test data from

the data generator matches that which was read from RAM, the fail flag is not asserted.

Testing continues until the clock is disabled or the external reset is asserted.

The Comparator module, shown in Figure 19 (see Appendix A for com-

plete internal schematics and VHDL code), consists of three inputs (ram_data, test_data,

and comp_enable) and one output (fail). The 24-bit bus ram_data is connected to the

System-Memory and its input is compared by the Comparator module to the test_data-

bus input from the Pattern module. Likewise, the 24-bit bus test_data is connected to the

Pattern module and is compared by the Comparator module to the System-Memory out-

put. The comp_enable pin is connected to the Top-Level Control Logic module and its

input controls when the Comparator should conduct a comparison. The fail pin outputs

the result of the comparison, and generates a signal, flag, if the comparison fails.

Figure 18. Comparator Module.

34

A partial Test-Bench waveform shown in Figure 19 (see Appendix A for a

complete Test-Bench waveform) demonstrates the module’s ability to compare two 24-

bit signals and output a fail signal if any bit(s) does not match.

Figure 19. Comparator Test-Bench Waveform.

e. State Machine
Initially, the State Machine was designed with a very low threshold for

faults. As shown in Figure 20(a), if a single fault was detected in any test state the state

machine would transition to a freeze state (halting the execution of the test) and remain

there until the external reset signal was asserted. This low threshold design provides very

little data for diagnosis. With the one fault, a single capture of the test’s status is pro-

vided for diagnosis in this RAM test design. Conversely, a design with a high threshold

for faults provides a large amount of data for diagnosis. Because of the remote nature of

the CFTP on board a satellite, providing as much information as possible allows the

CFTP to take advantage of its reprogrammability/reconfigurability and design around the

potential faults. Figure 20(b) illustrates the chosen state machine with a higher threshold.

With each fault experienced, a capture of the test’s state is stored and the test is contin-

ued.

35

 (a) Low Threshold State Machine (b) High Threshold State Machine

Figure 20. RAM Test State Machine.

36

Fourteen different tests (shown in Table 8) must be conducted in order to

implement the Data, Address and Memory-Chip tests that were described earlier. Within

each individual test, there are specific operations that are synchronized to a variety of

signals, such as enables, resets and the write and read address. Since these tests and op-

erations must be conducted in a specific order and must transition to subsequent opera-

tions depending on the outcome of each test, a State Machine module is used for arbitrat-

ing the Memory Test. There are fourteen different states that are controlled by the state

machine logic. Also included in the state machine are delay counters. These counters set

the wait intervals that are necessary for ensuring clean test transitions as well as to create

the delay needed for data retention testing.

State Name Operation Performed Address
Counter Pattern

WAIT Wait N/A N/A

DELAY_ COUNT Count TBD Clock cycles N/A N/A

DATA_W Write Sliding 1s
(at base address) N/A Sliding 1s

DATA_R Read Sliding 1s
(at base address) N/A Sliding 1s

ADDRESS_W Write AAAAAAh P2_W AAAAAAh

ADDRESS_WL Write AAAAAAh
(to last address 800000h) P2_W AAAAAAh

ADDRESS_WI Write 555555h
(inverted pattern) P2_WI 555555h

ADDRESS_R Read AAAAAAh P2_W AAAAAAh

ADDRESS_RL Read AAAAAAh
(from last address 800000h) P2_W AAAAAAh

MEMORY_WU Write UP UP_WA AAAAAAh

MEMORY_RU Read UP UP_RA AAAAAAh

MEMORY_WD Write DOWN DN_WA 555555h

MEMORY_RD Read DOWN DN_RA 555555h

PASS Pass state. Continue testing
until clock stops N/A N/A

Table 8. Description of the states used in the Memory Test.

37

The State Machine module, shown in Figure 21 (see Appendix A for com-

plete internal schematics and VHDL code), consists of four inputs (clock, restart, flag,

and addr) and two outputs (pass_enable and state). The clock pin is connected to the

single clock used for the whole system and the restart pin is connected to system’s exter-

nal reset signal. The flag pin is connected to the Comparator and is used to notify the

State Machine module that a test has failed. The 24-bit addr bus is connected to the Top-

Level Control Logic module and feeds the current memory address to the state machine.

The state machine uses this address signal to help determine state transitions. The

pass_enable pin is asserted by the state machine when it completes all of the states re-

quired to test the RAM. This is used by the Top-Level Control Logic module to count

the number of times the BIST completes a full RAM test. The 8-bit state bus outputs a

number sequence for each state. This output is used by the Pattern and Top-Level Con-

trol Logic modules to execute specific tasks during specific states.

Figure 21. State Machine Module.

38

The three partial Test-Bench waveforms shown in Figure 22 (see Appen-

dix A for a complete Test-Bench waveform) demonstrate the module’s ability to take in

address inputs and make transitions between states. Figure 22(a) shows the module in-

crementing through the different write and read states during the Data-Bus test. Figure

22(b) demonstrates the module executing the state which writes to all the power-of-two

addresses, until the last address (i.e., 800000h) is reached and the state transitions from

state 40 to 41. In state 41 the state writes to the last address. In state 42, the inverted pat-

tern is written to memory. Finally, during state 43 and C0, the patterns are read and veri-

fied from each power-of-two address (C0 reads the last address, 800000h). Figure 22(c)

shows the module transitioning between states which incrementally write and read (i.e.,

state F8 and F9 respectively) and states which decrementally write and read (i.e., FA and

FB respectively).

(a) Data-Bus Test Example

 (b) Address-Bus Test Example

 (c) Memory-Chip Test Example

Figure 22. State Machine Test-Bench Waveform.

39

f. Address Counter (Counter)
Every address in the RAM array under test is evaluated many times; the

use of counters to supply encoded address bits to the memory address decoders provide

an easy way to synchronously address the embedded RAM array during self-testing. Ad-

dress Counter-Control logic is contained in the Test Controller module (i.e., the Top-

Level Control Logic) where the counters are instantiated. Some of the RAM tests require

testing to begin at the first address line and count up, begin at the last address line and

count down, or count in powers-of-two. Therefore, an up-counter module, a down-

counter module, and a power-of-two module are used. Six different types of 24-bit ad-

dress counters (16M RAM addresses map to 224 bits) are instantiated in the Top-Level-

Control Logic module: read-address up counter (UP_RA), write-address up counter

(UP_WA), read-address down counter (DN_RA), write-address down counter

(DN_WA), write power-of-two address counter (P2_W), and write-inverted3 power-of-

two address counter (P2_WI).

The Counter module, shown in Figure 23 (see Appendix A for complete

internal schematics and VHDL code), consists of four inputs (clock, enable, reset, and re-

start) and two outputs (pass_enable and state). The clock pin is connected to the single

clock used for the whole system and the restart pin is connected to system’s external re-

set signal. The 6-bit enable bus is connected to the Top-Level Control Logic module that

controls which of the six address counters is enabled. The 6-bit reset bus is also con-

nected to the Top-Level Control Logic module that controls when the counters are reset.

The 24-bit buses UP_WA, UP_RA, DN_WA, and DN_RA are used during the Memory-

Chip Test to provide the appropriate incrementing/decrementing address counter. During

the Address Test, the 24-bit buses P2_W and P2_WI provide the addresses for writing a

pattern (i.e., AAAAAAh) and an inverted pattern (i.e., 555555h) respectively. During the

Data Test, a hardwired memory address is used.

3 Write-inverted refers to the fact that this counter is used specifically for the Address Test states

where an inverted copy of the pattern is written to memory.

40

Figure 23. Counter Module.

A partial Test-Bench waveform shown in Figure 24 (see Appendix A for a

complete Test-Bench waveform) demonstrates the module’s ability to enable and reset

specific counters in any combination.

Figure 24. Counter Test-Bench Waveform.

g. Test Controller (Top-Level Control Logic)
All of the modules above are instantiated and connected together in the

Top-Level Control Logic module. The Top-Level Control Logic module also contains

control logic to handle the following tasks:

• Synchronously control the read/write address counter enables and resets
with inputs from the state machine.

• Arbitrate which counters (up or power-of-two) are used to send encoded
address bits to RAM.

41

• Dictate to the Comparator when it is to test.

• Create a counter for keeping track of the number of consecutive passing
test cycles. The PASS_ENABLE signal for this counter is asserted by the
state machine module at the completion of each passing test cycle.

• Assign internal test signals to output pins in order to enhance the ob-
servability of the RAM self-testing.

Five modules are used to accomplish these different tasks; they are:

Counter-Control, Counter-Decode, Compare-Enable, Pass-Counter, and Status.

(1) Counter-Control Module. The Counter-Control module,

shown in Figure 25 (see Appendix A for complete internal schematics and VHDL code),

consists of one input (state) and two outputs (reset and enable). Based on the current

state fed to the module, the Counter-Control module determines the appropriate reset and

enable commands for the Counter module.

Figure 25. Counter-Control Module.

(2) Counter-Decode Module. The Counter-Decode module,

shown in Figure 26 (see Appendix A for complete internal schematics and VHDL code),

consists of seven inputs (state, address1, address2, address3, address4, address5, and

address6) and two outputs (rtwf and addr). Based on the current state fed to the module,

the Counter-Decode module determines which address-bus from the Counter module

should be routed to the RAM and State Machine module.

42

Figure 26. Counter-Decode Module.

(3) Compare-Enable Module. The Compare-Enable module,

shown in Figure 27 (see Appendix A for complete internal schematics and VHDL code),

consists of one input (state) and one output (comp_enable). Based on the current state

fed to the module, the Compare-Enable module asserts the comp_enable signal to enable

the Comparator module to compare the output of the memory location (i.e., ram_data)

with the expected pattern (i.e., test_data).

Figure 27. Compare-Enable Module.

(4) Pass-Counter Module. The Pass-Counter module, shown in

Figure 28 (see Appendix A for complete internal schematics and VHDL code), consists

of three inputs (enable, clock, and reset) and one output (Num_passes). The Pass-

Counter module is a simple counter. The module is clocked by the pass_enable signal

generated by the State Machine Module. Each time the state machine completes the test

sequence and asserts the pass_enable signal, the Pass-Counter module will be clocked

and therefore increment its counter.

43

Figure 28. Pass-Counter Module.

(5) Status Module. The Status module, shown in Figure 29

(see Appendix A for complete internal schematics and VHDL code), consists of four in-

puts (flag, state, addr and test_data) and three outputs (location, mode, and data). When

the Status module detects that the flag signal has been asserted, it captures the current

state, address and pattern.

Figure 29. Status Module.

 The combination of the last four modules make up the Control

Logic Module shown in Figure 30 (see Appendix A for complete internal schematics and

VHDL code).

44

Figure 30. Control Logic Module.

 Finally, Figure 31 shows the results of combining all of the mod-

ules into the completed design (see Appendix A for complete internal schematics, VHDL

code, and Test-Bench waveforms).

45

46
Figure 31. Complete RAM Test Design.

7. Testing the Test
The RAM BIST design shown in Figure 31 does not include a RAM module.

During development of the RAM BIST, a place-holder for the CFTP System-Memory

was needed but the actual test is connected to memory components. The absence of these

memory components in the RAM BIST provides a means to inject errors. One of the

Comparator module’s inputs, RAM_DATA which is normally data read from RAM, is

now an input to the RAM BIST. In the Test-Bench, this input is used to insert both cor-

rect and erroneous data values in order to test the RAM BIST’s ability to detect errors.

8. Conclusions and RAM BIST Implementation
This section has provided a detail description of the RAM BIST design and how it

addresses the hardware self-test for CFTP’s System-Memory components. The RAM

BIST is accomplished in a single configuration and is implemented in the Processor

FPGA. Access to CFTP’s System-Memory is only through the Processor FPGA; there-

fore, access to RAM from the Controller FPGA requires configuring the Processor FPGA

to allow inputs to pass through to outputs. This means implementing the RAM BIST in

the Controller FPGA requires two configurations. So, in order to reduce the number of

required configurations and maintain the simplest design, the RAM BIST is implemented

in the Processor FPGA.

The next section focuses on the design of a data-checksum device used to ensure

that data is correctly maintained in the EPROM/PROM and Flash Memory components.

It discusses the analysis, design, and implementation of the checksum.

47

C. READ-ONLY MEMORY TESTING
Once the prototype CFTP is ready, assurance that the Erasable Programmable

Read-Only Memory (EPROM), Programmable Read-Only Memory (PROM), and Flash

Memory4 components are wired correctly is needed. Additionally, during initial opera-

tions in space, confirmation that the various ROM chips are working properly is also

needed, as the launch environment or radiation effects may have altered their operation.

It may also be desired to test the EPROM/PROM or Flash Memory each time the system

is powered-on or reset. Stored in ROM are the different CFTP configurations. Errors in

these will more that likely make a configuration unusable. A method is needed, as with

the RAM test, to verify that each storage location in the ROM devices is working. How-

ever, unlike the RAM components the EPROM/PROM and Flash Memory are nonvola-

tile memories, so the method of writing some set of data and verifying the data by read-

ing it back will not work. Instead, the CFTP will use the suspect configuration to make a

unique signature which can be compared to the signature from the correct configuration.

The ROM test will utilize a checksum device to produce a sum, the signature. This sig-

nature can then be compared to the stored expected result to determine whether the de-

vice has experienced any hardware faults.

The checksum device uses a state machine architecture which is divided into three

modules: System, Data, and Control. The System module is the overall checksum device,

and connects the Data and Control modules. The Data module is the part of the system

that stores, moves, and transforms data, using registers to hold data values and multiplex-

ers when multiple inputs are possible [30]. The Control module controls the data trans-

fers, the transformations, and the sequencing [30]. Inputs to the Control module are the

conditions generated by the Data module plus the external control inputs. The outputs

are control signals that are distributed to the corresponding control points in the Data

module (i.e., multiplexers and registers). There are several common approaches for the

implementation of the Control module [30]. First, it can be implemented as a hardwired

controller in the sense that it consists of a fixed state transition and output definition and

4 Because Flash Memory is non-volatile memory and is used in the CFTP design similarly to an
EPROM device, further mention in this section of ROM will include Flash Memory.

48

any changes to the controller’s behavior would require modifying the state transitions or

output definitions. A more general approach is to implement the controller as a micro-

programmed device, one that has a fixed state transition and output definition part but its

actions are programmed much like a regular computer Central Processing Unit (CPU)

[29, 30]. The typical implementation methods for controllers are listed in Table 9.

Fixed a. Register (or counter or shift register) + gates

 b. Register (or counter) + multiplexers

 c. Register (or counter) + ROM or PLA

 d. Programmable Sequential Array

 e. Microprogrammed Controller

 f. Microprogrammable Controller

Programmable g. Microprocessor as controller

Table 9. Implementation Approaches for Control Subsystems. (After Ref. [30].)

A general controller architecture is shown in Figure 32. Note that the System has

external inputs and outputs that connect to either of the two internal Data or Control

subsystems. As mentioned earlier, the main purpose of the System is to connect the Data

and Control subsystems.

Figure 32. General ROM Test Structure. (After Ref. [30].)

49

The design methodology includes the following steps.

1. State the Problem to be Solved
The checksum device maintains a running sum of data received over the ROM

data bus. The PROM/EPROM and Flash Memory devices selected for CFTP all operate

with an 8-bit, parallel interface [22, 31, 24]. Therefore, the data is sent as many bytes of

data. The checksum device sums all data presented to it. To operate, the checksum de-

vice is set to run, given data, and notified that there is new data to sum. For example, if

the ROM contains the data stored in Table 10, the checksum device is given data inputs

of 01, 02, 04, 08 in hexadecimal.

00000001

00000010

00000100

00001000

00010000

…

Table 10. Example ROM contents.

50

This produces a checksum output of 15, or 0F in hexadecimal. The sequence of

external Data and Control signals given to the checksum device follow steps 1–8 from

Table 11.

Step Data(hex) Run Newdata Result(hex) done

1 01 0 0 00 1

2 01 1 0 00 0

3 01 1 1 01 0

4 02 1 1 03 0

5 04 1 1 07 0

6 08 1 1 0F 0

7 08 1 0 0F 0

8 08 0 0 0F 1

9 10 1 0 0F 0

10 10 1 1 10 0

Table 11. External Data and Control Signals.

Note that step 9 begins new data, indicated by run changing from 0 back to 1.

The computed checksum accumulates as 0, 1, 3, 07, 15 (0, 1, 3, 7, 0F in hexadecimal). In

use, the stored checksum and the computed checksum are then compared to determine

whether the data had been correctly stored and maintained in ROM. The checksum de-

vice must indicate when the checksum has been computed (it is done) so that an external

comparator can compare the computed and the received checksum for equality. In the

example, if both the computed and received checksum are 0F, then the received data is

assumed correct.

51

2. Determine the Inputs and Outputs for the Test Device
From the above problem statement, the required inputs and outputs are deter-

mined. It is useful to look at the connections/interface for the CFTP from a black-box

perspective. For the checksum device the inputs and outputs are as in Figure 33 where

Data and the checksum Result are n-bit inputs and outputs, while run, newdata, and done

are single-bit control signals.

Figure 33. ROM Test Module. (After Ref. [29].)

52

3. Define the States, Transitions and Outputs of Each State
A state diagram is useful to help determine high-level states and transition condi-

tions [30]. Figure 34 illustrates first the high-level operations necessary (see Figure

34(a)). These high-level operations are further defined as control outputs of multiplexers

and registers (see Figure 34(b)).

 (a) High Level State Diagram (b) Multiplexer/Register Level State Diagram

Figure 34. ROM Test State Diagram.

This state diagram defines the Control module shown in Figure 35 (see Appendix

B for complete internal schematics and VHDL code).

Figure 35. Control Module.

53

A partial Test-Bench waveform shown in Figure 36 (see Appendix B for a com-

plete Test-Bench waveform) demonstrates the module’s ability to take in inputs and make

transitions between states.

Figure 36. Control Module Test-Bench Waveform.

4. Determine the Computational Modules
The checksum device needs a method to add a registered sum to incoming data.

This can be implemented using a simple Adder module seen in Figure 37 (see Appendix

B for complete internal schematics and VHDL code).

Figure 37. Adder Module.

5. Develop a Data Subsystem Module
To accomplish steps 3–5 of Table 11, data registers are required to hold state in-

formation and multiplexers are needed to select between data sources. The following

paragraphs describe these.

54

a. Registers
The general rule of thumb for determining what requires a register (e.g., a

flipflop5) is: if a value must be maintained through multiple states, make it a register [32].

The other option is to set the value in each state. This includes any internal values and

outputs. For the checksum device, there is Sum, Result, and done that must be main-

tained through multiple states or set in each state. Sum and Result must be in n-bit regis-

ters, done in a single-bit register. To simplify the design, only the n-bit values (Sum and

Result) will be treated as registers (i.e., rSum and rResult). When to assign the rSum reg-

ister a value is controlled by rSumLoad. If it is asserted, the register value changes on the

clock edge. The same is true for rResult. The purpose of rResult is to hold the result af-

ter the checksum is computed and run=0 (execution of the checksum device is stopped),

since Sum=0 when run=0.

b. Multiplexers
The need for a multiplexer (mux) is determined by whether a variable has

multiple assignments [30]. If a variable has only one assignment, no multiplexer is re-

quired. If two assignments, a two-input mux is required, four assignments requires a four

input mux, etc. The checksum device has one variable, Sum, with two assignments (i.e.,

Sum=0, and Sum=Sum+Data). The multiplexer selects the input that the rSum register

receives. When the control signal muxSum is 0, the input of "000000000000000" is se-

lected and when muxSum is 1 the input Sum+Data is selected.

55

5 An edge-triggered, clocked storage unit that stores a single bit of data. A low-to-high transition
on the clock signal changes the output of the flipflop to the value of the data input(s). This value is main-
tained until the next low-to-high transition of the clock, or until the flipflop is reset [30].

A diagram of the devices and connections is shown in Figure 38 and can

help visualize the data subsystem architecture.

Figure 38. Data Subsystem Details.

Figure 39 shows the Data subsystem module (see Appendix B for com-

plete internal schematics and VHDL code). The Data subsystem module receives three

Control subsystem module inputs (i.e., muxSum, rSumLoad, and rResultLoad) and the

Data input, then outputting the Result. Note the CLOCK and RESTART inputs; these tie

the Data module’s registers to the clock used for the whole system and the system’s ex-

ternal reset signal.

Figure 39. Data Module.

56

A partial Test-Bench waveform shown in Figure 40 (see Appendix B for a

complete Test-Bench waveform) demonstrates the module’s ability to store and sum ap-

propriately.

Figure 40. Data Module Test-Bench Waveform.

6. Develop the System Module

As mentioned earlier, the System module serves to connect the Data and Control

subsystem modules. The Control subsystem is concerned only with generating control

signals while the Data subsystem is concerned only with operations on data. From the

general architecture shown in Figure 32, the checksum device is created and shown in

Figure 41.

Figure 41. System Module.

57

A partial Test-Bench waveform shown in Figure 42 (see Appendix B for a com-

plete Test-Bench waveform) demonstrates the module’s ability to sum a consecutive se-

ries on data inputs.

Figure 42. System Module Test-Bench Waveform.

7. Develop the Top Level Module

The Top-Level module serves to connect the System module with a Comparator

module. The System module, shown in Figure 43, generates a checksum signature while

the Comparator module compares the result to the stored expected result. The Checksum

module shown in Figure 43 is a general design. For a design specific to either the

EPROM/PROM or Flash Memory data, the correctResult bus is hardwired to be a stored

signature specific to the configuration(s) stored in the device being tested. This signature

is then compared to the checksum result from the System module.

Figure 43. Checksum Module.

58

A partial Test-Bench waveform shown in Figure 44 (see Appendix B for a com-

plete Test-Bench waveform) demonstrates the module’s ability to execute a test on a set

of data whose signature should be 00D.

Figure 44. Checksum Module Test-Bench Waveform.

8. Testing the Test
Testing the ROM BIST’s ability to detect errors is done by verifying the resulting

sum it produces. Two methods to accomplish this are either to feed in a configuration

with an erroneous bit or to compare the resulting sum with an incorrect hardwired signa-

ture.

The checksum signature output from the System module is a 16-bit value created

by summing 8-bit values. While summing consecutive 8-bit values of configuration data,

eventually the resulting sum will overflow the 16-bit Result bus. Once the overflow oc-

curs, technically the signature is no longer unique; however, the probability that an error

would cause an overflow and subsequently the correct signature is extremely low. If the

CFTP is operating in an environment of high radiation exposure and sufficient concern

exists that a duplicate signature will occur, the 16-bit Result bus can be expanded to an

X-bit bus by modifying the Data Subsystem module. The multiplexer buses will need to

be lengthened and the 16-bit zero changed to an X-bit zero. The 16-bit registers will

need to be replaced with X-bit registers. Finally, the 16-bit buses of the Adder module

will need to be expanded and the 8-bit data input padded with zeros to make an X-bit in-

put for summing.

9. Conclusions and ROM BIST Implementation
This section has provided a detailed description of the ROM BIST design and

how it addresses the hardware self-test for CFTP’s configuration-storage components. In

59

the case of the ISP EPROM or the Flash Memory, where the stored data can be changed,

anytime the data is modified by uploading and storing a new configuration(s), a new

EPROM or Flash Memory test configuration with the new signature must also be stored.

The OTP PROM cannot change its stored data, so the PROM test configuration and sig-

nature will never change.

The next section focuses on the method to make configurations to detect internal

and external FPGA faults.

D. FIELD-PROGRAMMABLE GATE ARRAY TESTING
Once the prototype CFTP is ready, assurance that each Field-Programmable Gate

Array (FPGA) device is wired correctly is needed. Additionally, during initial operations

in space, confirmation that the two FPGA devices are working properly is also needed, as

the launch environment or radiation effects may have altered their operation. It may also

be desired to test FPGAs each time the system is powered-on or reset. As shown in Fig-

ure 45, FPGAs are made up of an array of configurable logic blocks (CLBs) surrounded

by configurable input/output blocks (IOBs) [21, 26].

Figure 45. FPGA Architecture Overview. (From Ref. [21].)

60

This array of CLBs is interconnected by a programmable routing network, or gen-

eral routing matrix (GRM) [21, 26]. The GRM is an array of switches which determine

the routing of wire segments at the intersections of the rows and columns of the array of

CLBs. Each CLB is made up of logic cells (LCs) which are the core elements used in

constructing the representative logic [21]. IOBs provide the interface between off-chip

signals and the CLBs [21]. The CLBs and their interconnect are susceptible to a range of

events, such as SEUs or SELs, which may cause damage or faults to occur. In CLBs, this

damage can result in changes to the circuit that the LCs were meant to represent. With

interconnects, this damage can result in faulty connections between CLBs affecting the

operation of the configured circuit. This section addresses the damage or faults that may

occur in CLBs or interconnect with two tests: the CLB test of the LCs and the intercon-

nect test of the wires surrounding the CLBs.

1. Introduction
As mentioned in previous sections, by configuring the test logic only during off-

line testing, the reprogrammability of the FPGA can be exploited and testability is

achieved without any overhead. This is due to the fact that the test logic disappears once

the FPGA is reconfigured. This is all facilitated by means of configuration-storage, the

amount available of which determines the number functions the FPGA(s) can operate as.

Therefore, as will be discussed later, trade-offs must be balanced between the amount of

storage space needed for configurations, and the number of configurations needed to per-

form the desired system functions. Additionally, in the CFTP architecture the two

FPGAs can function independently so they can be tested concurrently and therefore re-

duce the test run-time.

2. Interfacing with the Test
When designing an FPGA test, it is tempting to follow the assumption that access

to the test should be made through the multiple input/output (I/O) pins on the FPGA.

First instincts are to use the I/O pins for initiation of the test sequence and obtaining the

pass/fail status at the end of the sequence; however, this would not be the best method.

This use of I/O pins for signals make the FPGA testing difficult since it is not known a

priori which I/O pins will be inputs and which will be outputs. The most logical and

61

practical interface for FPGA testing access is the Boundary Scan Test Access Port (TAP)

interface [26]. Because there exists an IEEE Boundary Scan standard, IEEE 1149.1,

most FPGAs, including those chosen for the CFTP, support reconfiguration through the

IEEE 1149.1 interface [21, 33, 34]. Therefore, Boundary Scan access can be used for

downloading the test configurations, initiating the test sequence, retrieving the subse-

quent test results and reconfiguring the FPGA upon completion of off-line testing. Using

a JTAG interface through the PC104 Bus interface with the satellites, initiation of FPGA

tests other that at power-on/reset are signaled via a Boundary Scan TAP.

3. The Test Process
The FPGA test process is a sequence of test phases in which each phase consists

of the following steps: 1) reconfigure the circuit, 2) initiate the test which includes gen-

erating test patterns and analyzing responses to produce a pass/fail indication, and 3) read

the test results [26]. In step 1 of each test phase, the test controller must configure the

FPGAs from their respective configuration-storage devices. In step 2, the test controller

initiates the test sequence via the system’s external reset signal. Finally, in step 3 the

pass/fail results of the test are retrieved and the end of the test sequence is indicated by a

done signal.

The underlying principle for both the CLB test and the interconnect test is to con-

figure one group of CLBs as TPGs and another group of CLBs as ORAs. Recall from

previous sections and Figure 10, the TPG produces a sequence of patterns for testing the

CUT and the ORA compares the output responses from the CUT to produce a pass/fail

indication. In the CLB test, an additional group of CLBs is configured as blocks under

test (BUTs); while in the interconnect test a group of wire segments and configuration in-

terconnect points (CIPs) are configured as wires under test (WUTs) [26]. By closing or

opening CIPs, a configuration can control which wire segments are connected or discon-

nected between CLBs, thus isolating specific WUTs.

62

In the Xilinx Virtex FPGAs, each CLB is made up of two LCs that provide multi-

ple modes of operation to the CLBs [21]. As shown in Figure 46, a 4-input function gen-

erator, carry logic, and storage element per LC allow each CLB to operate in a Look-Up

Table (LUT) mode or RAM mode. Because there are multiple modes in which a CLB

can operate, during the CLB test the BUTs require repeated reconfiguration in order to

test all modes [26]. Similarly, during the interconnect test different groups of WUTs are

configured to test all interconnect resources. Each reconfiguration of the FPGA makes

up a test phase. A collection of test phases make up a test session. One test session

completely tests the BUTs in all their modes of operation or tests for similar types of in-

terconnect faults in WUTs. Multiple test sessions are needed to completely test all CLBs

and their interconnect.

Figure 46. Configuration Logic Block. (After Ref. [21].)

63

4. The CLB Tests
As mentioned, each CLB can operate in either a RAM mode or a LUT mode. In

order to exhaustively test a CLB, each of these modes needs to be tested. Because the

RAM mode provides higher fault detection, it is tested first [26]. During the RAM mode,

it is required to test that every storage location is working. This is done by writing some

set of data to each address and verifying the data by reading it back, similar to the RAM

BIST. During the LUT mode, inputs are tested for stuck-at faults. Utilizing the D Algo-

rithm method, faults located at the input to the LUT can be propagated to the output of

the LUT [3]. The XOR gate provides good controllability and observability properties

both at the input and output. Shown in Table 12, the 2-input XOR gate detects stuck-at-

zero (s-a-0) and stuck-at-one (s-a-1) faults on both lines of the input, for every input pat-

tern. So for any test pattern, if a fault occurs on either input it is identified.

 x1 s-a-0 x1s-a-1 x2 s-a-0 x2 s-a-1 q s-a-0 q s-a-1

00 X X X

01 X X X

10 X X X

11 X X X

Table 12. Fault Table for the XOR Gate. (After Ref. [3].)

The Propagation D Cube, shown in Table 13, demonstrates how the stuck-at fault

occurring at the input is propagated to the output, thus sensitizing the output to each of

the input lines. A value D (0 when faulty and 1 when fault-free) sensitizes the output

with a value D or D* (1 when faulty and 0 when fault-free). Programming the LUT as a

64

4-input XOR gate will allow the BUT to propagate a fault to the output. Because the

LUTs are 4-input LUTs, the TPG will apply all 24, or 16, test vectors to the LUT inputs.

x1 x2 q

D 1 D*

D 0 D

1 D D*

0 D D

Table 13. Propagation D Cube for the XOR Gate. (After Ref. [3].)

Figure 47(a) is an example of a CLB test session configuration and Figures 47(b)

and (c) outline the physical and functional assignments for each row of CLBs in the

FPGA. Once the BUTs have been tested, the roles of the CLBs are changed so that in the

next test session rows that were BUTs become TPGs or ORAs and vice versa. Clearly, if

at least half the CLBs are BUTs during each test session, only two test sessions are

needed [26]. This is accomplished by flipping the assignment table in Figure 47(b) about

the horizontal axis, making the assignments as shown in Figure 47 (c).

 (a) (b) (c)

Figure 47. Basic Architecture for CLB Test. (After Ref. [26].)

If one block architecture, as shown in Figure 47(a), does not cover the FPGA’s

entire array, multiples of this architecture are needed (see Figure 48). The number of

65

blocks will depend on the size of the FPGA. This decomposes the testing problem into

many identical problems of a fixed size. This approach allows the test to be scalable to

FPGAs of any size.

Figure 48. Basic CLB Test Architecture across FPGA array.

During each test phase and test session, all BUTs are configured to have identical

representative logical functions and receive identical test patterns [26]. If each BUT were

fault-free, it would produce the same output pattern as their neighboring BUT; therefore,

comparator ORAs can be used to compare the outputs of neighboring BUTs and propa-

gate the results through the row of ORAs (as seen in Figure 47(a)). The result of each

comparison is stored and then shifted out at the end of the test [26]. By storing the

pass/fail result from each row of ORAs, the test can identify the specific row in which a

faulty CLB exists. Similarly, by rotating the test configuration 90 degrees into a new se-

ries of test phases, any column containing a faulty CLB can be identified. Incorporating

these two test methods provide a means to uniquely identify a specific faulty CLB within

the FPGAs. Figure 49 outlines the physical and functional assignments for each row of

CLBs in this complete test method.

 (a) Session #1 (b) Session #2 (c) Session #3 (d) Session #4

66
Figure 49. CLB Test Configurations for FPGAs. (After Ref. [26].)

Assuming two modes of operation, each row assignment requires two configura-

tions or two test phases. At a minimum, each row assignment requires two test sessions

to allow each BUT to become a TPG or ORA and vice versus. To identify a faulty CLB

by row and column, an additional two test sessions are required. Therefore, the number

of tests in this example required to completely test the CLBs is four test sessions of two

test phases each or a total eight test phases/configurations. As mentioned in Chapter 2,

the configuration-storage for the Processor FPGA holds eight configurations and the

Controller FPGA holds either one for the ISP EPROM or four for the OTP PROM. So,

one obvious cost incurred when implementing the FPGA test becomes the amount of ex-

ternal memory required to store the multiple test configurations. A single test configura-

tion with total fault coverage would be ideal, and provides a good trade-off in situations

where applying a full set of configurations requires too much system-level real estate.

However, experiments of such methods have achieved lesser fault coverage with one ex-

ample of only 56.5% fault coverage of single stuck faults [35]. Research is continuing

and new test configurations are being designed with increased fault coverage and reason-

able sizes.

5. The Interconnect Test
As in CLB testing, during interconnect testing the FPGA is reconfigured as vari-

ous independent structures. Wire segments and CIPs are configured to form two groups

of wires under test (WUTs) [26]. As with the BUTs in the CLB test, the WUTs will re-

ceive identical test patterns. ORAs will compare WUTs and produce a pass/fail indica-

tion. Figure 50 is an example of an interconnect test configuration. Similar to the CLB

test, there may need to be many of these test blocks operating concurrently to cover the

entire FPGA array. Several wire segments connected by closed CIPs make up the WUTs

[26]. In Figure 50 there are two groups of WUTs shown. The first connects the wire

segments S1, S2, S3, S4, S5, and S6. The second connects the wire segments S7, S8, S9,

and S10. WUT may pass through CLBs that are configured as an identity function and

thus the inputs are passed directly to the outputs (as shown in Figure 50 by the dashed

line through the CLB boxes) [26].

67

Figure 50. Basic Architecture for Interconnect Test Configuration. (After Ref. [26].)

The interconnect test session uses the same test phases as mentioned earlier: 1)

reconfigure the circuit, 2) initiate the test, and 3) read the test results. During step 2, test

patterns are generated and output responses are analyzed. The WUTs consist of n wire

segments. Each wire segment must be tested for its ability to transmit both logic 0 and

logic 1 which takes 2n test vectors to complete an exhaustive test pattern. The TPG will

apply these patterns to one end of the WUTs and the ORA will verify the patterns re-

ceived at the other end of the WUTs. The open CIPs that isolate the WUTs from the rest

of the interconnect must be tested for stuck-closed faults. To achieve this, the TPG con-

trols any wire that may become shorted to some WUT (S11, S12, S13, S14, and S15 in

Figure 50), such that when the TPG passes a logic 0 on the WUT it also sets S11, S12,

S13, S14, and S15 to logic1 (and vice versus from logic 1 to logic 0) at least once during

the interconnect test phase [26].

A potential problem occurs during step 2, when the test phase is analyzing the

pass/fail indications from the ORAs during both the CLB test and the interconnect test. If

two sets of BUTs/WUTs possess equivalent faults when compared by the ORA, they will

escape detection [26]. To resolve this issue, every group of BUTs/WUTs must be com-

68

pared with multiple respective BUTs/WUTs. This will decrease the chances that a fault

will go undetected, but unfortunately increase the number of test sessions and configura-

tions.

6. Conclusions and FPGA BIST Implementation
In conclusion, it is apparent that the main cost in FPGA testing is the number of

configurations required to be stored onboard the CFTP in order to completely test the

FPGA devices. As mentioned earlier, the alternative is to use a single, total fault cover-

age test that will detect all the faults in one test sequence. While single, high fault cover-

age tests do not ensure the FPGA is completely fault-free, they do provide some means of

reasonable assurance that the devices are operational. The amount of fault coverage and

the degree of assurance a specific test can provide for FPGAs in specific system-level de-

sign is dependant on each application.

The limited configuration storage available in the current CFTP design brings this

real estate question to reality. A decision needs to be made on what amount of fault cov-

erage for the CFTP is adequate. Two key points can help focus this debate. First, the

FPGA BIST for the CFTP is not intended as a means to provide fault tolerance to any of

CFTP’s configurations. It is assumed that each configuration designer will perform

his/her own reliability analysis and provide for the needed level of fault tolerance. This

helps relax any requirements on the BIST design to mitigate SEUs that may cause faults

to occur in CLBs or their interconnect. Therefore, the use of the FPGA BIST can be iso-

lated to monitoring the system health and reliability and not fault tolerance.

Second, past experiences with creating designs for implementation into the cho-

sen FPGAs have shown that they have more than enough space to represent the desired

circuit. One example of a TMR processor design showed that only 17% of the FPGA

was used, even with three microprocessors in the design [15]. This provides a large

amount of area within each FPGA for remapping the design around faulty CLBs or even

a complete row containing a faulty CLB. This allows the BIST design to perform ade-

quately without the additional configurations needed to narrow down the faulty CLB by

column. Therefore, this reduces the required configurations to two test sessions of two

69

test phases each, or four configurations for the CLB test and two test sessions of one test

phase each, or two configurations for the interconnect test. These six configurations are

the minimum number of configurations needed to completely test each BUT and WUT

for faults.

The only FPGA configuration-storage device that can store all of these test con-

figurations is the Flash Memory. Fortunately, both FPGAs have access to this device

without having to go through the other FPGA. So, both FPGAs can run the BIST inde-

pendently and concurrently. During on-orbit operations, if the minimal FPGA BIST of

six configurations is stored in Flash Memory, that leaves two remaining configurations in

the Processor FPGA and three in the Controller FPGA (one of the four configurations for

the Controller FPGA is dedicated to the Controller’s default configuration). As men-

tioned in Chapter 2, one of the CFTP objectives is to demonstrate fault tolerance with a

TMR processor configuration; therefore this will take up one of the remaining two con-

figurations in the Processor FPGA. With another four configurations available for the

RAM BIST, ROM BIST, and other potential configurations to assist the CFTP in demon-

strating its reprogrammability and reconfigurability objectives, the minimal FPGA BIST

is definitely a viable option with the available configuration-storage real estate. During

development, when the configuration-storage devices can be easily and quickly updated,

larger configurations can be used for the FPGA BIST.

70

IV. CONCLUSIONS AND FOLLOW-ON RESEARCH

A. OVERVIEW
This purpose of this thesis was to design and develop a series of Built-In Self-

Tests (BISTs) for use with the Configurable Fault Tolerant Processor (CFTP) in space

applications. The final stages of integration are still required once the development,

qualification and flight boards are ready. In concert with the initial objectives of this pro-

ject, the CFTP BIST has been designed as a self-contained, autonomous, self-testing cir-

cuit.

B. CONCLUSIONS
This thesis has described a BIST approach for the CFTP’s System-Memory, con-

figuration-storage, and Field-Programmable Gate Arrays that provides a means to moni-

tor the health of the system and furnish reliability through BISTs. The BISTs operate on

each component of the CFTP system: RAM BIST (System-Memory), ROM BIST (con-

figuration-storage memory), and FPGA BIST (both FPGAs). The test sequence for these

BISTs follows the order: FPGA BIST, ROM BIST, and then RAM BIST. This will al-

low for assurance in the FPGAs prior to loading them with the ROM BIST. Finally, once

the PROM/EPROM and Flash Memory functionalities are confirmed, the RAM BIST

configuration can be loaded. Together, this test suite forms a set of hardware diagnostics.

If one or more of the diagnostics fail, action can be taken to diagnose the problem and re-

pair or circumvent the faulty hardware.

The basic BIST architecture introduced has proven to be very adaptive, as it has

been applied in every BIST design easily and without performance penalties. Addition-

ally, the applicability of FPGAs in BIST implementations has proven to have a very im-

portant role in reducing on-chip testing hardware. The FPGA approach allows the test

hardware to be removed from the device once the test is complete. However, FPGAs do

incur other test costs, such as increased test generation and test application time. Instead

71

of a single configuration for fault detection, FPGAs require multiple configurations to

test an assortment of CLB modes and programmable interconnect, with the attendant con-

figuration storage cost.

Fortunately, the RAM BIST is accomplished in a single configuration and effi-

ciently tests whether each storage location in the System-Memory is working correctly.

Similarly, the ROM BIST is a single configuration test. An important consideration to

remember when uploading new configurations to the CFTP is that this changes the signa-

ture of the ROM device and therefore will not match the signature hardwired into the

ROM BIST checksum device. To allow for continuous autonomous operation of the

ROM BIST, a new ROM BIST configuration should also be uploaded with the new cor-

rect signature. This should not be an issue when uploading configurations from the

Ground Station to the satellite, as it is just as easy to send all the configurations as it is to

send one6. An issue will arise when the CFTP is saving a configuration from itself into

the Flash Memory device, possibly for download to the Ground Station.

Additionally, because the RAM BIST and ROM BIST operate on different com-

ponents of the CFTP and have the same number of required configurations, their designs

can be implemented in one RAM/ROM BIST that simultaneously conducts both tests. In

the Xilinx ISE software used in creating CFTP’s BISTs, this is easily done. By simply

creating a module that represents each of the two overall BISTs, a new test can be created

that contains these two modules. Some integration may be needed to deconflict signal

names or other syntax that may be illegally shared between the modules. Finally, To fur-

ther reduce the number of required configurations, the Processor and Controller FPGAs

should be tested concurrently.

An underlying theme throughout the design process of the CFTP project was to

maintain a very small footprint. This design constraint has led to a very efficient repro-

grammable/reconfigurable system; however, it has created an obstacle in its ability to

6 While the satellites that CFTP is currently manifested on have a modest data rate between ground

station(s) and satellites (e.g. MidSTAR-1 can provide up to 9600 bps), files uploaded to the satellite will be
compressed before transmitting and buffered upon receipt.

72

maintain system-reliability. Future CFTP designs should take this into consideration and

provide for a means to store a larger number of configurations with either more configu-

ration-storage devices or ones that can hold a much larger number of configurations. At a

minimum, the CFTP should be able to store all 10 FPGA BIST configurations and the

RAM/ROM BIST configuration and still have room for other configurations such as the

TMR processor design.

C. FOLLOW-ON RESEARCH
Currently, the CFTP is manifested for launch into LEO orbit on two satellites in

2006 and efforts are in motion to acquire additional manifests into higher orbits. In order

to accommodate these flights, there are many areas for follow on research that must be

accomplished. First, the BISTs designed in this thesis must be integrated into the CFTP

development board, qualification board, and flight boards. Assuming that these boards’

designs prove valid, the qualification board must be qualified for space. This verification

process should evaluate the suitability of the designs in numerous space environments

(e.g., high vacuum, extreme temperatures, solar and particle radiation) and launch condi-

tions (e.g., shock load, static load, and various frequency driven vibrations). While these

environments will not necessarily duplicate the space environment or launch conditions,

they merely need to approach it sufficiently so that any unit that passes the tests will sur-

vive the launch and operate successfully in its designed space environment. Once a

qualified design has been achieved, flight boards must be built, tested, and then integrated

into the host satellites.

The configuration for the Controller FPGA needs to be designed. This should

contain at a minimum the configuration control, command and status registers, and bus

interface logic. This is an essential component to the CFTP architecture and will have to

be integrated and routed to the appropriate hardwired pins.

Other than the BIST designs in this thesis, the only other configuration written for

the CFTP is a Triple Modular Redundant (TMR) microprocessor, KDLX. However, to

date no programs have been written for it. Although extensive research has been done to

perfect its interrupt handling capabilities in mitigating SEU induced errors and converting

73

its memory interface architecture to match that of the CFTP’s, actual instantiation of the

TMR design in an FPGA has not been attempted.

Finally, the fine details in the integration of the CFTP into the host satellites needs

to be accomplished. While protocols, connectors and components have been agreed

upon, the details of what commands need to be transmitted and received between the

CFTP and the satellite Command and Data Handler have not been.

74

APPENDIX A: COMPLETE SCHEMATICS, VHDL CODES AND
TEST-BENCH WAVEFORMS FOR SDRAM TEST

Appendix A contains the schematic diagrams, VHDL code, and Test-Bench

waveforms for the complete SDRAM test design. The appendix is organized by module,

so each section contains a module schematic/VHDL code and a Test-Bench waveform.

75

A. COMPLETE DESIGN

1. Schematic Diagram

76

2. Test-Bench Waveform

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

B. PATTERN MODULE

1. VHDL Code

-- filename: Pattern.vhd
-- written by: Charles Hulme
--
-- This Program generates the patterns that will be written
-- to memory or compared to what is stored in memory.
--
-- Which pattern is chosen is driven by the 8 bit input, STATE.
-- Each pattern will use a series of if/then statements to define
-- the pattern sequence.
--
-- The patterns are:
-- Sliding 1's. A one is moved through each
-- of the bit positions in the 24 bit outputs.
-- e.g. 00000000000000000000000000000001
-- 00000000000000000000000000000010
-- 00000000000000000000000000000100
-- ...
-- 10000000000000000000000000000000
--
-- Alternating 1's and 0's. A single bit stream pattern
-- of alternating 1's and 0's (A constant value not a pattern).
-- e.g. 10101010101010101010101010101010
--
-- Alternating 0's and 1's. A single bit stream pattern
-- of alternating 0's and 1's (A constant value not a pattern).
-- e.g. 01010101010101010101010101010101
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity PATTERN is
 port (
 CLOCK: in STD_LOGIC;
 RESTART: in STD_LOGIC;
 STATE: in STD_LOGIC_VECTOR (7 downto 0);
 FLAG: IN STD_LOGIC;
 TEST_DATA: out STD_LOGIC_VECTOR (23 downto 0);
 WRITE_DATA: out STD_LOGIC_VECTOR (23 downto 0)
);
end PATTERN;

architecture PATTERN_arch of PATTERN is

begin

FCN: process(RESTART,FLAG,STATE)

153

 begin

 if RESTART = '1' then
 WRITE_DATA <= "000000000000000000000000";
 TEST_DATA <= "000000000000000000000000";
 elsif STATE = "00000000" then -- In state Wait_State, no pattern
 WRITE_DATA <= "000000000000000000000000";
 TEST_DATA <= "000000000000000000000000";
 elsif STATE = "00000001" then -- In state Delay_Count, no pattern
 WRITE_DATA <= "000000000000000000000000";
 TEST_DATA <= "000000000000000000000000";

 --Starting Data Test Pattern
 elsif STATE = "00000010" then -- writing pattern
 WRITE_DATA <= "000000000000000000000000";
 TEST_DATA <= "000000000000000000000000";
 elsif STATE = "00000011" then -- reading pattern
 WRITE_DATA <= "000000000000000000000000";
 TEST_DATA <= "000000000000000000000000";

 elsif STATE = "00000100" then
 WRITE_DATA <= "000000000000000000000001";
 TEST_DATA <= "000000000000000000000001";
 elsif STATE = "00000101" then
 WRITE_DATA <= "000000000000000000000001";
 TEST_DATA <= "000000000000000000000001";

 elsif STATE = "00000110" then
 WRITE_DATA <= "000000000000000000000010";
 TEST_DATA <= "000000000000000000000010";
 elsif STATE = "00000111" then
 WRITE_DATA <= "000000000000000000000010";
 TEST_DATA <= "000000000000000000000010";

 elsif STATE = "00001000" then
 WRITE_DATA <= "000000000000000000000100";
 TEST_DATA <= "000000000000000000000100";
 elsif STATE = "00001001" then
 WRITE_DATA <= "000000000000000000000100";
 TEST_DATA <= "000000000000000000000100";

 elsif STATE = "00001010" then
 WRITE_DATA <= "000000000000000000001000";
 TEST_DATA <= "000000000000000000001000";
 elsif STATE = "00001011" then
 WRITE_DATA <= "000000000000000000001000";
 TEST_DATA <= "000000000000000000001000";

 elsif STATE = "00001100" then
 WRITE_DATA <= "000000000000000000010000";
 TEST_DATA <= "000000000000000000010000";
 elsif STATE = "00001101" then
 WRITE_DATA <= "000000000000000000010000";
 TEST_DATA <= "000000000000000000010000";

154

 elsif STATE = "00001110" then
 WRITE_DATA <= "000000000000000000100000";
 TEST_DATA <= "000000000000000000100000";
 elsif STATE = "00001111" then
 WRITE_DATA <= "000000000000000000100000";
 TEST_DATA <= "000000000000000000100000";

 elsif STATE = "00010000" then
 WRITE_DATA <= "000000000000000001000000";
 TEST_DATA <= "000000000000000001000000";
 elsif STATE = "00010001" then
 WRITE_DATA <= "000000000000000001000000";
 TEST_DATA <= "000000000000000001000000";

 elsif STATE = "00010010" then
 WRITE_DATA <= "000000000000000010000000";
 TEST_DATA <= "000000000000000010000000";
 elsif STATE = "00010011" then
 WRITE_DATA <= "000000000000000010000000";
 TEST_DATA <= "000000000000000010000000";

 elsif STATE = "00010100" then
 WRITE_DATA <= "000000000000000100000000";
 TEST_DATA <= "000000000000000100000000";
 elsif STATE = "00010101" then
 WRITE_DATA <= "000000000000000100000000";
 TEST_DATA <= "000000000000000100000000";

 elsif STATE = "00010110" then
 WRITE_DATA <= "000000000000001000000000";
 TEST_DATA <= "000000000000001000000000";
 elsif STATE = "00010111" then
 WRITE_DATA <= "000000000000001000000000";
 TEST_DATA <= "000000000000001000000000";

 elsif STATE = "00011000" then
 WRITE_DATA <= "000000000000010000000000";
 TEST_DATA <= "000000000000010000000000";
 elsif STATE = "00011001" then
 WRITE_DATA <= "000000000000010000000000";
 TEST_DATA <= "000000000000010000000000";

 elsif STATE = "00011010" then
 WRITE_DATA <= "000000000000100000000000";
 TEST_DATA <= "000000000000100000000000";
 elsif STATE = "00011011" then
 WRITE_DATA <= "000000000000100000000000";
 TEST_DATA <= "000000000000100000000000";

 elsif STATE = "00011100" then
 WRITE_DATA <= "000000000001000000000000";
 TEST_DATA <= "000000000001000000000000";
 elsif STATE = "00011101" then

155

 WRITE_DATA <= "000000000001000000000000";
 TEST_DATA <= "000000000001000000000000";

 elsif STATE = "00011110" then
 WRITE_DATA <= "000000000010000000000000";
 TEST_DATA <= "000000000010000000000000";
 elsif STATE = "00011111" then
 WRITE_DATA <= "000000000010000000000000";
 TEST_DATA <= "000000000010000000000000";

 elsif STATE = "00100000" then
 WRITE_DATA <= "000000000100000000000000";
 TEST_DATA <= "000000000100000000000000";
 elsif STATE = "00100001" then
 WRITE_DATA <= "000000000100000000000000";
 TEST_DATA <= "000000000100000000000000";

 elsif STATE = "00100010" then
 WRITE_DATA <= "000000001000000000000000";
 TEST_DATA <= "000000001000000000000000";
 elsif STATE = "00100011" then
 WRITE_DATA <= "000000001000000000000000";
 TEST_DATA <= "000000001000000000000000";

 elsif STATE = "00100100" then
 WRITE_DATA <= "000000010000000000000000";
 TEST_DATA <= "000000010000000000000000";
 elsif STATE = "00100101" then
 WRITE_DATA <= "000000010000000000000000";
 TEST_DATA <= "000000010000000000000000";

 elsif STATE = "00100110" then
 WRITE_DATA <= "000000100000000000000000";
 TEST_DATA <= "000000100000000000000000";
 elsif STATE = "00100111" then
 WRITE_DATA <= "000000100000000000000000";
 TEST_DATA <= "000000100000000000000000";

 elsif STATE = "00101000" then
 WRITE_DATA <= "000001000000000000000000";
 TEST_DATA <= "000001000000000000000000";
 elsif STATE = "00101001" then
 WRITE_DATA <= "000001000000000000000000";
 TEST_DATA <= "000001000000000000000000";

 elsif STATE = "00101010" then
 WRITE_DATA <= "000010000000000000000000";
 TEST_DATA <= "000010000000000000000000";
 elsif STATE = "00101011" then
 WRITE_DATA <= "000010000000000000000000";
 TEST_DATA <= "000010000000000000000000";

 elsif STATE = "00101100" then
 WRITE_DATA <= "000100000000000000000000";

156

 TEST_DATA <= "000100000000000000000000";
 elsif STATE = "00101101" then
 WRITE_DATA <= "000100000000000000000000";
 TEST_DATA <= "000100000000000000000000";

 elsif STATE = "00101110" then
 WRITE_DATA <= "001000000000000000000000";
 TEST_DATA <= "001000000000000000000000";
 elsif STATE = "00101111" then
 WRITE_DATA <= "001000000000000000000000";
 TEST_DATA <= "001000000000000000000000";

 elsif STATE = "00110000" then
 WRITE_DATA <= "010000000000000000000000";
 TEST_DATA <= "010000000000000000000000";
 elsif STATE = "00110001" then
 WRITE_DATA <= "010000000000000000000000";
 TEST_DATA <= "010000000000000000000000";

 elsif STATE = "00110010" then
 WRITE_DATA <= "100000000000000000000000";
 TEST_DATA <= "100000000000000000000000";
 elsif STATE = "00110011" then
 WRITE_DATA <= "100000000000000000000000";
 TEST_DATA <= "100000000000000000000000"; --Last pattern in
 -- sliding 1s

 --Starting Address Pattern
 elsif STATE = "00111110" then -- In state
 WRITE_DATA <= "000000000000000000000000";-- Wait_State1
 TEST_DATA <= "000000000000000000000000";
 elsif STATE = "00111111" then -- In state
 WRITE_DATA <= "101010101010101010101010";--Delay_Count1 thru 4
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01000000" then -- In state
 WRITE_DATA <= "101010101010101010101010";-- Address_W1
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01000001" then -- In state
 WRITE_DATA <= "101010101010101010101010";-- Address_WL1
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01000010" then -- In state
 WRITE_DATA <= "010101010101010101010101";-- Address_WI1
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01000011" then -- In state
 WRITE_DATA <= "101010101010101010101010";-- Address_R1
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11000000" then -- In state
 WRITE_DATA <= "101010101010101010101010";-- Address_RL1
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01000100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01000101" then
 WRITE_DATA <= "101010101010101010101010";

157

 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01000110" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01000111" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11000001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01001000" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01001001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01001010" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01001011" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11000010" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01001100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01001101" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01001110" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01001111" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11000011" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01010000" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01010001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01010010" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01010011" then
 WRITE_DATA <= "101010101010101010101010";

158

 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11000100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01010100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01010101" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01010110" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01010111" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11000101" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01011000" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01011001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "10011010" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01011011" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11000110" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01011100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01011101" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01011110" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01011111" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11000111" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01100000" then

159

 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01100001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01100010" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01100011" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11001000" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01100100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01100101" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01100110" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01100111" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11001001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01101000" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01101001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01101010" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01101011" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11001010" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01101100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01101101" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01101110" then

160

 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01101111" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11001011" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01110000" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01110001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01110010" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01110011" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11001100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01110100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01110101" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01110110" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01110111" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11001101" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01111000" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01111001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01111010" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01111011" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11001110" then

161

 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "01111100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01111101" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "01111110" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "01111111" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11001111" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "10000000" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "10000001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "10000010" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "10000011" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11010000" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "10000100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "10000101" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "10000110" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "10000111" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11010001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "10001000" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

162

 elsif STATE = "10001001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "10001010" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "10001011" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11010010" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "10001100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "10001101" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "10001110" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "10001111" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11010011" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "10010000" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "10010001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "10010010" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "10010011" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11010100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "10010100" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "10010101" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "1010110" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";

163

 elsif STATE = "10010111" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11010101" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "10011000" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "10011001" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "10011010" then
 WRITE_DATA <= "010101010101010101010101";
 TEST_DATA <= "010101010101010101010101";
 elsif STATE = "10011011" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";
 elsif STATE = "11010110" then
 WRITE_DATA <= "101010101010101010101010";
 TEST_DATA <= "101010101010101010101010";

 --Starting Memory Test
 elsif STATE = "11111000" then -- In state
 WRITE_DATA <= "101010101010101010101010";-- Memory_WU
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "11111001" then -- In state
 WRITE_DATA <= "101010101010101010101010";-- Memory_RU
 TEST_DATA <= "101010101010101010101010";

 elsif STATE = "11111010" then -- In state
 WRITE_DATA <= "010101010101010101010101";-- Memory_WD
 TEST_DATA <= "010101010101010101010101";

 elsif STATE = "11111011" then -- In state
 WRITE_DATA <= "010101010101010101010101";-- Memory_RD
 TEST_DATA <= "010101010101010101010101";

 --elsif STATE = "11111000" then -- In state Pass, no pattern
 --elsif STATE = "11111111" then -- In state Freeze, no pattern

 end if;

end process FCN;

end PATTERN_arch;

164

2. Test-Bench Waveform

165

166

167

168

169

C. COMPARATOR MODULE

1. Schematic Diagram
The Xilinx LogiCORE Comparator is used to create one of the following com-

parison logic functions: A=B, A<>B, A<=B, A>=B, A<B, or A>B. A and B are external

ports ranging in width from 1 to 256 bits, and B can optionally be set to a constant value.

The module operates on signed or unsigned data.

170

2. Test-Bench Waveform

171

D. STATE MACHINE MODULE

1. VHDL Code

-- filename: state_machine.vhd
-- written by: Charles Hulme
--
-- This state machine controls the flow of the different
-- tests that are to be executed and establishes a bit pattern
-- for each test that can be used in the pattern generator to
-- decode the correct pattern to use in each state.
--
-- Failing a test does not stop the state machine, but by asserting
-- the Flag signal the state will be captured by the status module
--
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity STATE_MACHINE is
 port (
 CLOCK: in STD_LOGIC;
 RESTART: in STD_LOGIC;
 FLAG: in STD_LOGIC;
 ADDR: in STD_LOGIC_VECTOR (23 downto 0);
 STATE: out STD_LOGIC_VECTOR (7 downto 0);
 PASS_ENABLE: out STD_LOGIC
);
end STATE_MACHINE;

architecture STATE_MACHINE_arch of STATE_MACHINE is

type FSM_type is (WAIT_STATE,DELAY_COUNT1,DELAY_COUNT2,DELAY_COUNT3,
 DELAY_COUNT4,
 DATA_W1,DATA_R1,DATA_C1,DATA_W2,DATA_R2,DATA_C2,
 DATA_W3,DATA_R3,DATA_C3,DATA_W4,DATA_R4,DATA_C4,
 DATA_W5,DATA_R5,DATA_C5,DATA_W6,DATA_R6,DATA_C6,
 DATA_W7,DATA_R7,DATA_C7,DATA_W8,DATA_R8,DATA_C8,
 DATA_W9,DATA_R9,DATA_C9,DATA_W10,DATA_R10,DATA_C10,
 DATA_W11,DATA_R11,DATA_C11,DATA_W12,DATA_R12,DATA_C12,
 DATA_W13,DATA_R13,DATA_C13,DATA_W14,DATA_R14,DATA_C14,
 DATA_W15,DATA_R15,DATA_C15,DATA_W16,DATA_R16,DATA_C16,
 DATA_W17,DATA_R17,DATA_C17,DATA_W18,DATA_R18,DATA_C18,
 DATA_W19,DATA_R19,DATA_C19,DATA_W20,DATA_R20,DATA_C20,
 DATA_W21,DATA_R21,DATA_C21,DATA_W22,DATA_R22,DATA_C22,
 DATA_W23,DATA_R23,DATA_C23,DATA_W24,DATA_R24,DATA_C24,
 DATA_W25,DATA_R25,DATA_C25,WAIT_STATE1,DELAY_COUNT11,
 DELAY_COUNT12,DELAY_COUNT13,DELAY_COUNT14,
 ADDRESS_W1,ADDRESS_WL1,ADDRESS_WI1,ADDRESS_R1,ADDRESS_RL1,
 ADDRESS_W2,ADDRESS_WL2,ADDRESS_WI2,ADDRESS_R2,ADDRESS_RL2,
 ADDRESS_W3,ADDRESS_WL3,ADDRESS_WI3,ADDRESS_R3,ADDRESS_RL3,
 ADDRESS_W4,ADDRESS_WL4,ADDRESS_WI4,ADDRESS_R4,ADDRESS_RL4,

172
 ADDRESS_W5,ADDRESS_WL5,ADDRESS_WI5,ADDRESS_R5,ADDRESS_RL5,

 ADDRESS_W6,ADDRESS_WL6,ADDRESS_WI6,ADDRESS_R6,ADDRESS_RL6,
 ADDRESS_W7,ADDRESS_WL7,ADDRESS_WI7,ADDRESS_R7,ADDRESS_RL7,
 ADDRESS_W8,ADDRESS_WL8,ADDRESS_WI8,ADDRESS_R8,ADDRESS_RL8,
 ADDRESS_W9,ADDRESS_WL9,ADDRESS_WI9,ADDRESS_R9,ADDRESS_RL9,
 ADDRESS_W10,ADDRESS_WL10,ADDRESS_WI10,ADDRESS_R10,ADDRESS_RL10,
 ADDRESS_W11,ADDRESS_WL11,ADDRESS_WI11,ADDRESS_R11,ADDRESS_RL11,
 ADDRESS_W12,ADDRESS_WL12,ADDRESS_WI12,ADDRESS_R12,ADDRESS_RL12,
 ADDRESS_W13,ADDRESS_WL13,ADDRESS_WI13,ADDRESS_R13,ADDRESS_RL13,
 ADDRESS_W14,ADDRESS_WL14,ADDRESS_WI14,ADDRESS_R14,ADDRESS_RL14,
 ADDRESS_W15,ADDRESS_WL15,ADDRESS_WI15,ADDRESS_R15,ADDRESS_RL15,
 ADDRESS_W16,ADDRESS_WL16,ADDRESS_WI16,ADDRESS_R16,ADDRESS_RL16,
 ADDRESS_W17,ADDRESS_WL17,ADDRESS_WI17,ADDRESS_R17,ADDRESS_RL17,
 ADDRESS_W18,ADDRESS_WL18,ADDRESS_WI18,ADDRESS_R18,ADDRESS_RL18,
 ADDRESS_W19,ADDRESS_WL19,ADDRESS_WI19,ADDRESS_R19,ADDRESS_RL19,
 ADDRESS_W20,ADDRESS_WL20,ADDRESS_WI20,ADDRESS_R20,ADDRESS_RL20,
 ADDRESS_W21,ADDRESS_WL21,ADDRESS_WI21,ADDRESS_R21,ADDRESS_RL21,
 ADDRESS_W22,ADDRESS_WL22,ADDRESS_WI22,ADDRESS_R22,ADDRESS_RL22,
 ADDRESS_W23,ADDRESS_WL23,ADDRESS_WI23,ADDRESS_R23,ADDRESS_RL23,
 ADDRESS_W24,ADDRESS_WL24,ADDRESS_WI24,ADDRESS_R24,ADDRESS_RL24,
 MEMORY_WU,MEMORY_RU,MEMORY_WD,MEMORY_RD,MEMORY_WLU,MEMORY_RLU,
 MEMORY_WLD,MEMORY_RLD,FREEZE,PASS);

signal Curr_State, Next_State : FSM_Type;

begin

-- Process that implements the Next State Logic
nxtStProc: process(Curr_State,RESTART,FLAG,ADDR)

 begin

 if RESTART = '1' then
 Next_State <= WAIT_STATE;
 else
 case Curr_State is

 --Delay counter
 when WAIT_STATE =>
 Next_State <= DELAY_COUNT1;

 when DELAY_COUNT1 =>
 Next_State <= DELAY_COUNT2;

 when DELAY_COUNT2 =>
 Next_State <= DELAY_COUNT3;

 when DELAY_COUNT3 =>
 Next_State <= DELAY_COUNT4;

 when DELAY_COUNT4 =>
 Next_State <= DATA_W1;

 --Data Test
 when DATA_W1 => -- Write pattern to Memory

173

 Next_State <= DATA_R1;
 when DATA_R1 => -- Read pattern from Memory
 Next_State <= DATA_W2;

 when DATA_W2 =>
 Next_State <= DATA_R2;
 when DATA_R2 =>
 Next_State <= DATA_W3;

 when DATA_W3 =>
 Next_State <= DATA_R3;
 when DATA_R3 =>
 Next_State <= DATA_W4;

 when DATA_W4 =>
 Next_State <= DATA_R4;
 when DATA_R4 =>
 Next_State <= DATA_W5;

 when DATA_W5 =>
 Next_State <= DATA_R5;
 when DATA_R5 =>
 Next_State <= DATA_W6;

 when DATA_W6 =>
 Next_State <= DATA_R6;
 when DATA_R6 =>
 Next_State <= DATA_W7;

 when DATA_W7 =>
 Next_State <= DATA_R7;
 when DATA_R7 =>
 Next_State <= DATA_W8;

 when DATA_W8 =>
 Next_State <= DATA_R8;
 when DATA_R8 =>
 Next_State <= DATA_W9;

 when DATA_W9 =>
 Next_State <= DATA_R9;
 when DATA_R9 =>
 Next_State <= DATA_W10;

 when DATA_W10 =>
 Next_State <= DATA_R10;
 when DATA_R10 =>
 Next_State <= DATA_W11;

 when DATA_W11 =>
 Next_State <= DATA_R11;
 when DATA_R11 =>
 Next_State <= DATA_W12;

174

 when DATA_W12 =>
 Next_State <= DATA_R12;
 when DATA_R12 =>
 Next_State <= DATA_W13;

 when DATA_W13=>
 Next_State <= DATA_R13;
 when DATA_R13=>
 Next_State <= DATA_W14;

 when DATA_W14=>
 Next_State <= DATA_R14;
 when DATA_R14=>
 Next_State <= DATA_W15;

 when DATA_W15=>
 Next_State <= DATA_R15;
 when DATA_R15=>
 Next_State <= DATA_W16;

 when DATA_W16=>
 Next_State <= DATA_R16;
 when DATA_R16=>
 Next_State <= DATA_W17;

 when DATA_W17=>
 Next_State <= DATA_R17;
 when DATA_R17=>
 Next_State <= DATA_W18;

 when DATA_W18=>
 Next_State <= DATA_R18;
 when DATA_R18=>
 Next_State <= DATA_W19;

 when DATA_W19=>
 Next_State <= DATA_R19;
 when DATA_R19=>
 Next_State <= DATA_W20;

 when DATA_W20=>
 Next_State <= DATA_R20;
 when DATA_R20=>
 Next_State <= DATA_W21;

 when DATA_W21=>
 Next_State <= DATA_R21;
 when DATA_R21=>
 Next_State <= DATA_W22;

 when DATA_W22 =>
 Next_State <= DATA_R22;
 when DATA_R22 =>
 Next_State <= DATA_W23;

175

 when DATA_W23 =>
 Next_State <= DATA_R23;
 when DATA_R23 =>
 Next_State <= DATA_W24;

 when DATA_W24 =>
 Next_State <= DATA_R24;
 when DATA_R24 =>
 Next_State <= DATA_W25;

 when DATA_W25 =>
 Next_State <= DATA_R25;
 when DATA_R25 =>
 Next_State <= WAIT_STATE1;

 -- Delay counter
 when WAIT_STATE1 =>
 Next_State <= DELAY_COUNT11;

 when DELAY_COUNT11 =>
 Next_State <= DELAY_COUNT12;

 when DELAY_COUNT12 =>
 Next_State <= DELAY_COUNT13;

 when DELAY_COUNT13 =>
 Next_State <= DELAY_COUNT14;

 when DELAY_COUNT14 =>
 Next_State <= ADDRESS_W1;

 --Address Test
 when ADDRESS_W1 => --write data to all Power of 2 addresses
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL1;
 else
 Next_State <= ADDRESS_W1;
 end if;
 when ADDRESS_WL1 => --write data to last Power of 2 address
 Next_State <= ADDRESS_WI1;
 when ADDRESS_WI1 => --write an inverted copy to one address
 Next_State <= ADDRESS_R1;
 when ADDRESS_R1 => --read data from all Power of 2 addresses
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL1;
 else
 Next_State <= ADDRESS_R1;
 end if;
 when ADDRESS_RL1 => --read data from last Power of 2 address
 Next_State <= ADDRESS_W2;

 when ADDRESS_W2 =>
 if ADDR = "100000000000000000000000" then

176

 Next_State <= ADDRESS_WL2;
 else
 Next_State <= ADDRESS_W2;
 end if;
 when ADDRESS_WL2 =>
 Next_State <= ADDRESS_WI2;
 when ADDRESS_WI2 =>
 Next_State <= ADDRESS_R2;
 when ADDRESS_R2 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL2;
 else
 Next_State <= ADDRESS_R2;
 end if;
 when ADDRESS_RL2 =>
 Next_State <= ADDRESS_W3;

 when ADDRESS_W3 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL3;
 else
 Next_State <= ADDRESS_W3;
 end if;
 when ADDRESS_WL3 =>
 Next_State <= ADDRESS_WI3;
 when ADDRESS_WI3 =>
 Next_State <= ADDRESS_R3;
 when ADDRESS_R3 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL3;
 else
 Next_State <= ADDRESS_R3;
 end if;
 when ADDRESS_RL3 =>
 Next_State <= ADDRESS_W4;

 when ADDRESS_W4 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL4;
 else
 Next_State <= ADDRESS_W4;
 end if;
 when ADDRESS_WL4 =>
 Next_State <= ADDRESS_WI4;
 when ADDRESS_WI4 =>
 Next_State <= ADDRESS_R4;
 when ADDRESS_R4 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL4;
 else
 Next_State <= ADDRESS_R4;
 end if;
 when ADDRESS_RL4 =>
 Next_State <= ADDRESS_W5;

177

 when ADDRESS_W5 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL5;
 else
 Next_State <= ADDRESS_W5;
 end if;
 when ADDRESS_WL5 =>
 Next_State <= ADDRESS_WI5;
 when ADDRESS_WI5 =>
 Next_State <= ADDRESS_R5;
 when ADDRESS_R5 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL5;
 else
 Next_State <= ADDRESS_R5;
 end if;
 when ADDRESS_RL5 =>
 Next_State <= ADDRESS_W6;

 when ADDRESS_W6 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL6;
 else
 Next_State <= ADDRESS_W6;
 end if;
 when ADDRESS_WL6 =>
 Next_State <= ADDRESS_WI6;
 when ADDRESS_WI6 =>
 Next_State <= ADDRESS_R6;
 when ADDRESS_R6 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL6;
 else
 Next_State <= ADDRESS_R6;
 end if;
 when ADDRESS_RL6 =>
 Next_State <= ADDRESS_W7;

 when ADDRESS_W7 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL7;
 else
 Next_State <= ADDRESS_W7;
 end if;
 when ADDRESS_WL7 =>
 Next_State <= ADDRESS_WI7;
 when ADDRESS_WI7 =>
 Next_State <= ADDRESS_R7;
 when ADDRESS_R7 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL7;
 else
 Next_State <= ADDRESS_R7;

178

 end if;
 when ADDRESS_RL7 =>
 Next_State <= ADDRESS_W8;

 when ADDRESS_W8 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL8;
 else
 Next_State <= ADDRESS_W8;
 end if;
 when ADDRESS_WL8 =>
 Next_State <= ADDRESS_WI8;
 when ADDRESS_WI8 =>
 Next_State <= ADDRESS_R8;
 when ADDRESS_R8 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL8;
 else
 Next_State <= ADDRESS_R8;
 end if;
 when ADDRESS_RL8 =>
 Next_State <= ADDRESS_W9;

 when ADDRESS_W9 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL9;
 else
 Next_State <= ADDRESS_W9;
 end if;
 when ADDRESS_WL9 =>
 Next_State <= ADDRESS_WI9;
 when ADDRESS_WI9 =>
 Next_State <= ADDRESS_R9;
 when ADDRESS_R9 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL9;
 else
 Next_State <= ADDRESS_R9;
 end if;
 when ADDRESS_RL9 =>
 Next_State <= ADDRESS_W10;

 when ADDRESS_W10 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL10;
 else
 Next_State <= ADDRESS_W10;
 end if;
 when ADDRESS_WL10 =>
 Next_State <= ADDRESS_WI10;
 when ADDRESS_WI10 =>
 Next_State <= ADDRESS_R10;
 when ADDRESS_R10 =>
 if ADDR = "100000000000000000000000" then

179

 Next_State <= ADDRESS_RL10;
 else
 Next_State <= ADDRESS_R10;
 end if;
 when ADDRESS_RL10 =>
 Next_State <= ADDRESS_W11;

 when ADDRESS_W11 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL11;
 else
 Next_State <= ADDRESS_W11;
 end if;
 when ADDRESS_WL11 =>
 Next_State <= ADDRESS_WI11;
 when ADDRESS_WI11 =>
 Next_State <= ADDRESS_R11;
 when ADDRESS_R11 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL11;
 else
 Next_State <= ADDRESS_R11;
 end if;
 when ADDRESS_RL11 =>
 Next_State <= ADDRESS_W12;

 when ADDRESS_W12 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL12;
 else
 Next_State <= ADDRESS_W12;
 end if;
 when ADDRESS_WL12 =>
 Next_State <= ADDRESS_WI12;
 when ADDRESS_WI12 =>
 Next_State <= ADDRESS_R12;
 when ADDRESS_R12=>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL12;
 else
 Next_State <= ADDRESS_R12;
 end if;
 when ADDRESS_RL12 =>
 Next_State <= ADDRESS_W13;

 when ADDRESS_W13 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL13;
 else
 Next_State <= ADDRESS_W13;
 end if;
 when ADDRESS_WL13 =>
 Next_State <= ADDRESS_WI13;
 when ADDRESS_WI13 =>

180

 Next_State <= ADDRESS_R13;
 when ADDRESS_R13=>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL13;
 else
 Next_State <= ADDRESS_R13;
 end if;
 when ADDRESS_RL13 =>
 Next_State <= ADDRESS_W14;

 when ADDRESS_W14 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL14;
 else
 Next_State <= ADDRESS_W14;
 end if;
 when ADDRESS_WL14 =>
 Next_State <= ADDRESS_WI14;
 when ADDRESS_WI14 =>
 Next_State <= ADDRESS_R14;
 when ADDRESS_R14=>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL14;
 else
 Next_State <= ADDRESS_R14;
 end if;
 when ADDRESS_RL14 =>
 Next_State <= ADDRESS_W15;

 when ADDRESS_W15 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL15;
 else
 Next_State <= ADDRESS_W15;
 end if;
 when ADDRESS_WL15 =>
 Next_State <= ADDRESS_WI15;
 when ADDRESS_WI15 =>
 Next_State <= ADDRESS_R15;
 when ADDRESS_R15=>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL15;
 else
 Next_State <= ADDRESS_R15;
 end if;
 when ADDRESS_RL15 =>
 Next_State <= ADDRESS_W16;

 when ADDRESS_W16 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL16;
 else
 Next_State <= ADDRESS_W16;
 end if;

181

 when ADDRESS_WL16 =>
 Next_State <= ADDRESS_WI16;
 when ADDRESS_WI16 =>
 Next_State <= ADDRESS_R16;
 when ADDRESS_R16=>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL16;
 else
 Next_State <= ADDRESS_R16;
 end if;
 when ADDRESS_RL16 =>
 Next_State <= ADDRESS_W17;

 when ADDRESS_W17 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL17;
 else
 Next_State <= ADDRESS_W17;
 end if;
 when ADDRESS_WL17 =>
 Next_State <= ADDRESS_WI17;
 when ADDRESS_WI17 =>
 Next_State <= ADDRESS_R17;
 when ADDRESS_R17=>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL17;
 else
 Next_State <= ADDRESS_R17;
 end if;
 when ADDRESS_RL17 =>
 Next_State <= ADDRESS_W18;

 when ADDRESS_W18 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL18;
 else
 Next_State <= ADDRESS_W18;
 end if;
 when ADDRESS_WL18 =>
 Next_State <= ADDRESS_WI18;
 when ADDRESS_WI18 =>
 Next_State <= ADDRESS_R18;
 when ADDRESS_R18=>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL18;
 else
 Next_State <= ADDRESS_R18;
 end if;
 when ADDRESS_RL18 =>
 Next_State <= ADDRESS_W19;

 when ADDRESS_W19 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL19;

182

 else
 Next_State <= ADDRESS_W19;
 end if;
 when ADDRESS_WL19 =>
 Next_State <= ADDRESS_WI19;
 when ADDRESS_WI19 =>
 Next_State <= ADDRESS_R19;
 when ADDRESS_R19=>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL19;
 else
 Next_State <= ADDRESS_R19;
 end if;
 when ADDRESS_RL19 =>
 Next_State <= ADDRESS_W20;

 when ADDRESS_W20 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL20;
 else
 Next_State <= ADDRESS_W20;
 end if;
 when ADDRESS_WL20 =>
 Next_State <= ADDRESS_WI20;
 when ADDRESS_WI20 =>
 Next_State <= ADDRESS_R20;
 when ADDRESS_R20 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL20;
 else
 Next_State <= ADDRESS_R20;
 end if;
 when ADDRESS_RL20 =>
 Next_State <= ADDRESS_W21;

 when ADDRESS_W21 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL21;
 else
 Next_State <= ADDRESS_W21;
 end if;
 when ADDRESS_WL21 =>
 Next_State <= ADDRESS_WI21;
 when ADDRESS_WI21 =>
 Next_State <= ADDRESS_R21;
 when ADDRESS_R21 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL21;
 else
 Next_State <= ADDRESS_R21;
 end if;
 when ADDRESS_RL21 =>
 Next_State <= ADDRESS_W22;

183

 when ADDRESS_W22 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL22;
 else
 Next_State <= ADDRESS_W22;
 end if;
 when ADDRESS_WL22 =>
 Next_State <= ADDRESS_WI22;
 when ADDRESS_WI22 =>
 Next_State <= ADDRESS_R22;
 when ADDRESS_R22 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL22;
 else
 Next_State <= ADDRESS_R22;
 end if;
 when ADDRESS_RL22 =>
 Next_State <= ADDRESS_W23;

 when ADDRESS_W23 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL23;
 else
 Next_State <= ADDRESS_W23;
 end if;
 when ADDRESS_WL23 =>
 Next_State <= ADDRESS_WI23;
 when ADDRESS_WI23 =>
 Next_State <= ADDRESS_R23;
 when ADDRESS_R23 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL23;
 else
 Next_State <= ADDRESS_R23;
 end if;
 when ADDRESS_RL23 =>
 Next_State <= ADDRESS_W24;

 when ADDRESS_W24 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_WL24;
 else
 Next_State <= ADDRESS_W24;
 end if;
 when ADDRESS_WL24 =>
 Next_State <= ADDRESS_WI24;
 when ADDRESS_WI24 =>
 Next_State <= ADDRESS_R24;
 when ADDRESS_R24 =>
 if ADDR = "100000000000000000000000" then
 Next_State <= ADDRESS_RL24;
 else
 Next_State <= ADDRESS_R24;
 end if;

184

 when ADDRESS_RL24 =>
 Next_State <= MEMORY_WU;

 --Memory Test
 when MEMORY_WU =>
 if ADDR = "111111111111111111111111" then
 Next_State <= MEMORY_WLU;
 else
 Next_State <= MEMORY_WU;
 end if;

 when MEMORY_WLU =>
 Next_State <= MEMORY_RU;

 when MEMORY_RU =>
 if ADDR = "111111111111111111111111" then
 Next_State <= MEMORY_RLU;
 else
 Next_State <= MEMORY_RU;
 end if;

 when MEMORY_RLU =>
 Next_State <= MEMORY_WD;

 when MEMORY_WD =>
 if ADDR = "000000000000000000000000" then
 Next_State <= MEMORY_WLD;
 else
 Next_State <= MEMORY_WD;
 end if;

 when MEMORY_WLD =>
 Next_State <= MEMORY_RD;

 when MEMORY_RD =>
 if ADDR = "000000000000000000000000" then
 Next_State <= MEMORY_RLD;
 else
 Next_State <= MEMORY_RD;
 end if;

 when MEMORY_RLD =>
 Next_State <= PASS;

 --If all tests pass
 when PASS =>
 Next_State <= DELAY_COUNT1;

 --If a test fails
 when FREEZE =>
 if RESTART = '1' then
 Next_State <= WAIT_STATE;
 else
 NEXT_STATE <= FREEZE;

185

 end if;

 when others => Next_State <= WAIT_STATE;

 end case;
 end if;

end process nxtStProc;

 --Process to register current state
 curStProc: process (CLOCK,RESTART,Next_State)
 begin
 if (RESTART = '1') then
 Curr_State <= WAIT_STATE;
 elsif (CLOCK'event and CLOCK ='1') then
 Curr_State <= Next_State;
 end if;
 end process curStProc;

 --Process to generate outputs
 outConProc: process(Curr_State)
 begin

 -- Set default value of ZERO for all output signals
 STATE <= "00000000";
 PASS_ENABLE <= '0';

 -- Set certain outputs depending on which state currently in
 case Curr_State is

 when WAIT_STATE =>
 STATE <= "00000000";

 when DELAY_COUNT1 =>
 STATE <= "00000001";

 when DELAY_COUNT2 =>
 STATE <= "00000001";

 when DELAY_COUNT3 =>
 STATE <= "00000001";

 when DELAY_COUNT4 =>
 STATE <= "00000001";

 --Starting Data Test
 when DATA_W1 => -- write data
 STATE <= "00000010";
 when DATA_R1 => -- read data
 STATE <= "00000011";

 when DATA_W2 =>
 STATE <= "00000100";
 when DATA_R2 =>

186

 STATE <= "00000101";

 when DATA_W3 =>
 STATE <= "00000110";
 when DATA_R3 =>
 STATE <= "00000111";

 when DATA_W4 =>
 STATE <= "00001000";
 when DATA_R4 =>
 STATE <= "00001001";

 when DATA_W5 =>
 STATE <= "00001010";
 when DATA_R5 =>
 STATE <= "00001011";

 when DATA_W6 =>
 STATE <= "00001100";
 when DATA_R6 =>
 STATE <= "00001101";

 when DATA_W7 =>
 STATE <= "00001110";
 when DATA_R7 =>
 STATE <= "00001111";

 when DATA_W8 =>
 STATE <= "00010000";
 when DATA_R8 =>
 STATE <= "00010001";

 when DATA_W9 =>
 STATE <= "00010010";
 when DATA_R9 =>
 STATE <= "00010011";

 when DATA_W10 =>
 STATE <= "00010100";
 when DATA_R10 =>
 STATE <= "00010101";

 when DATA_W11 =>
 STATE <= "00010110";
 when DATA_R11 =>
 STATE <= "00010111";

 when DATA_W12 =>
 STATE <= "00011000";
 when DATA_R12 =>
 STATE <= "00011001";

 when DATA_W13 =>
 STATE <= "00011010";

187

 when DATA_R13 =>
 STATE <= "00011011";

 when DATA_W14 =>
 STATE <= "00011100";
 when DATA_R14 =>
 STATE <= "00011101";

 when DATA_W15 =>
 STATE <= "00011110";
 when DATA_R15 =>
 STATE <= "00011111";

 when DATA_W16 =>
 STATE <= "00100000";
 when DATA_R16 =>
 STATE <= "00100001";

 when DATA_W17 =>
 STATE <= "00100010";
 when DATA_R17 =>
 STATE <= "00100011";

 when DATA_W18 =>
 STATE <= "00100100";
 when DATA_R18 =>
 STATE <= "00100101";

 when DATA_W19 =>
 STATE <= "00100110";
 when DATA_R19 =>
 STATE <= "00100111";

 when DATA_W20 =>
 STATE <= "00101000";
 when DATA_R20 =>
 STATE <= "00101001";

 when DATA_W21 =>
 STATE <= "00101010";
 when DATA_R21 =>
 STATE <= "00101011";

 when DATA_W22 =>
 STATE <= "00101100";
 when DATA_R22 =>
 STATE <= "00101101";

 when DATA_W23 =>
 STATE <= "00101110";
 when DATA_R23 =>
 STATE <= "00101111";

 when DATA_W24 =>

188

 STATE <= "00110000";
 when DATA_R24 =>
 STATE <= "00110001";

 when DATA_W25 =>
 STATE <= "00110010";
 when DATA_R25 =>
 STATE <= "00110011";

 when WAIT_STATE1 => -- start delay counter
 STATE <= "00111110";

 when DELAY_COUNT11 =>
 STATE <= "00111111";

 when DELAY_COUNT12 =>
 STATE <= "00111111";

 when DELAY_COUNT13 =>
 STATE <= "00111111";

 when DELAY_COUNT14 =>
 STATE <= "00111111";

 --Starting Address Test
 when ADDRESS_W1 => -- write pattern
 STATE <= "01000000";
 when ADDRESS_WL1 => -- write pattern to last address
 STATE <= "01000001";
 when ADDRESS_WI1 => -- write inverted pattern
 STATE <= "01000010";
 when ADDRESS_R1 => -- read pattern
 STATE <= "01000011";
 when ADDRESS_RL1 => -- read pattern from last address
 STATE <= "11000000";

 when ADDRESS_W2 =>
 STATE <= "01000100";
 when ADDRESS_WL2 =>
 STATE <= "01000101";
 when ADDRESS_WI2 =>
 STATE <= "01000110";
 when ADDRESS_R2 =>
 STATE <= "01000111";
 when ADDRESS_RL2 =>
 STATE <= "11000001";

 when ADDRESS_W3 =>
 STATE <= "01001000";
 when ADDRESS_WL3 =>
 STATE <= "01001001";
 when ADDRESS_WI3 =>
 STATE <= "01001010";
 when ADDRESS_R3 =>

189

 STATE <= "01001011";
 when ADDRESS_RL3 =>
 STATE <= "11000010";

 when ADDRESS_W4 =>
 STATE <= "01001100";
 when ADDRESS_WL4 =>
 STATE <= "01001101";
 when ADDRESS_WI4 =>
 STATE <= "01001110";
 when ADDRESS_R4 =>
 STATE <= "01001111";
 when ADDRESS_RL4 =>
 STATE <= "11000011";

 when ADDRESS_W5 =>
 STATE <= "01010000";
 when ADDRESS_WL5 =>
 STATE <= "01010001";
 when ADDRESS_WI5 =>
 STATE <= "01010010";
 when ADDRESS_R5 =>
 STATE <= "01010011";
 when ADDRESS_RL5 =>
 STATE <= "11000100";

 when ADDRESS_W6 =>
 STATE <= "01010100";
 when ADDRESS_WL6 =>
 STATE <= "01010101";
 when ADDRESS_WI6 =>
 STATE <= "01010110";
 when ADDRESS_R6 =>
 STATE <= "01010111";
 when ADDRESS_RL6 =>
 STATE <= "11000101";

 when ADDRESS_W7 =>
 STATE <= "01011000";
 when ADDRESS_WL7 =>
 STATE <= "01011001";
 when ADDRESS_WI7 =>
 STATE <= "01011010";
 when ADDRESS_R7 =>
 STATE <= "01011011";
 when ADDRESS_RL7 =>
 STATE <= "11000110";

 when ADDRESS_W8 =>
 STATE <= "01011100";
 when ADDRESS_WL8 =>
 STATE <= "01011101";
 when ADDRESS_WI8 =>
 STATE <= "01011110";

190

 when ADDRESS_R8 =>
 STATE <= "01011111";
 when ADDRESS_RL8 =>
 STATE <= "11000111";

 when ADDRESS_W9 =>
 STATE <= "01100000";
 when ADDRESS_WL9 =>
 STATE <= "01100001";
 when ADDRESS_WI9 =>
 STATE <= "01100010";
 when ADDRESS_R9 =>
 STATE <= "01100011";
 when ADDRESS_RL9 =>
 STATE <= "11001000";

 when ADDRESS_W10 =>
 STATE <= "01100100";
 when ADDRESS_WL10 =>
 STATE <= "01100101";
 when ADDRESS_WI10 =>
 STATE <= "01100110";
 when ADDRESS_R10 =>
 STATE <= "01100111";
 when ADDRESS_RL10 =>
 STATE <= "11001001";

 when ADDRESS_W11 =>
 STATE <= "01101000";
 when ADDRESS_WL11 =>
 STATE <= "01101001";
 when ADDRESS_WI11 =>
 STATE <= "01101010";
 when ADDRESS_R11 =>
 STATE <= "01101011";
 when ADDRESS_RL11 =>
 STATE <= "11001010";

 when ADDRESS_W12 =>
 STATE <= "01101100";
 when ADDRESS_WL12 =>
 STATE <= "01101101";
 when ADDRESS_WI12 =>
 STATE <= "01101110";
 when ADDRESS_R12 =>
 STATE <= "01101111";
 when ADDRESS_RL12 =>
 STATE <= "11001011";

 when ADDRESS_W13 =>
 STATE <= "01110000";
 when ADDRESS_WL13 =>
 STATE <= "01110001";
 when ADDRESS_WI13 =>

191

 STATE <= "01110010";
 when ADDRESS_R13 =>
 STATE <= "01110011";
 when ADDRESS_RL13 =>
 STATE <= "11001100";

 when ADDRESS_W14 =>
 STATE <= "01110100";
 when ADDRESS_WL14 =>
 STATE <= "01110101";
 when ADDRESS_WI14 =>
 STATE <= "01110110";
 when ADDRESS_R14 =>
 STATE <= "01110111";
 when ADDRESS_RL14 =>
 STATE <= "11001101";

 when ADDRESS_W15 =>
 STATE <= "01111000";
 when ADDRESS_WL15 =>
 STATE <= "01111001";
 when ADDRESS_WI15 =>
 STATE <= "01111010";
 when ADDRESS_R15 =>
 STATE <= "01111011";
 when ADDRESS_RL15 =>
 STATE <= "11001110";

 when ADDRESS_W16 =>
 STATE <= "01111100";
 when ADDRESS_WL16 =>
 STATE <= "01111101";
 when ADDRESS_WI16 =>
 STATE <= "01111110";
 when ADDRESS_R16 =>
 STATE <= "01111111";
 when ADDRESS_RL16 =>
 STATE <= "11001111";

 when ADDRESS_W17 =>
 STATE <= "10000000";
 when ADDRESS_WL17 =>
 STATE <= "10000001";
 when ADDRESS_WI17 =>
 STATE <= "10000010";
 when ADDRESS_R17 =>
 STATE <= "10000011";
 when ADDRESS_RL17 =>
 STATE <= "11010000";

 when ADDRESS_W18 =>
 STATE <= "10000100";
 when ADDRESS_WL18 =>
 STATE <= "10000101";

192

 when ADDRESS_WI18 =>
 STATE <= "10000110";
 when ADDRESS_R18 =>
 STATE <= "10000111";
 when ADDRESS_RL18 =>
 STATE <= "11010001";

 when ADDRESS_W19 =>
 STATE <= "10001000";
 when ADDRESS_WL19 =>
 STATE <= "10001001";
 when ADDRESS_WI19 =>
 STATE <= "10001010";
 when ADDRESS_R19 =>
 STATE <= "10001011";
 when ADDRESS_RL19 =>
 STATE <= "11010010";

 when ADDRESS_W20 =>
 STATE <= "10001100";
 when ADDRESS_WL20 =>
 STATE <= "10001101";
 when ADDRESS_WI20 =>
 STATE <= "10001110";
 when ADDRESS_R20 =>
 STATE <= "10001111";
 when ADDRESS_RL20 =>
 STATE <= "11010011";

 when ADDRESS_W21 =>
 STATE <= "10010000";
 when ADDRESS_WL21 =>
 STATE <= "10010001";
 when ADDRESS_WI21 =>
 STATE <= "10010010";
 when ADDRESS_R21 =>
 STATE <= "10010011";
 when ADDRESS_RL21 =>
 STATE <= "11010100";

 when ADDRESS_W22 =>
 STATE <= "10010100";
 when ADDRESS_WL22 =>
 STATE <= "10010101";
 when ADDRESS_WI22 =>
 STATE <= "10010110";
 when ADDRESS_R22 =>
 STATE <= "10010111";
 when ADDRESS_RL22 =>
 STATE <= "11010101";

 when ADDRESS_W23 =>
 STATE <= "10011000";
 when ADDRESS_WL23 =>

193

 STATE <= "10011001";
 when ADDRESS_WI23 =>
 STATE <= "10011010";
 when ADDRESS_R23 =>
 STATE <= "10011011";
 when ADDRESS_RL23 =>
 STATE <= "11010110";

 when ADDRESS_W24 =>
 STATE <= "10011100";
 when ADDRESS_WL24 =>
 STATE <= "10011101";
 when ADDRESS_WI24 =>
 STATE <= "10011110";
 when ADDRESS_R24 =>
 STATE <= "10011111";
 when ADDRESS_RL24 =>
 STATE <= "11010111";

 --Starting Memory Test
 when MEMORY_WU =>
 STATE <= "11111000";

 when MEMORY_WLU =>
 STATE <= "11111000";

 when MEMORY_RU =>
 STATE <= "11111001";

 when MEMORY_RLU =>
 STATE <= "11111001";

 when MEMORY_WD =>
 STATE <= "11111010";

 when MEMORY_WLD =>
 STATE <= "11111010";

 when MEMORY_RD =>
 STATE <= "11111011";

 when MEMORY_RLD =>
 STATE <= "11111011";

 when PASS =>
 PASS_ENABLE <= '1'; -- clock pass counter
 STATE <= "11111100";

 when FREEZE =>
 STATE <= "11111111";

 when others =>
 null;

194

 end case;

 end process outConProc;

end STATE_MACHINE_arch;

195

2. Test-Bench Waveform

196

197

198

199

200

201

202

E. ADDRESS COUNTER MODULE

1. Schematic Diagram

203

2. Test-Bench Waveform

204

205

206

207

208

209

210

211

F. COUNTER-CONTROL MODULE

1. VHDL Code

-- filename: cntr_cntl.vhd
-- written by: Charles Hulme
--
-- This controls the different counters and when they are
-- enabled/disabled and when they are reset.
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity cntr_cntl is
 Port (
 STATE: in std_logic_vector (7 downto 0);
 RESET: out STD_LOGIC_vector (5 downto 0);
 ENABLE: out STD_LOGIC_vector (5 downto 0)
);
end cntr_cntl;

architecture Behavioral of cntr_cntl is

begin

fcn: process (STATE)

begin

 --Data Test uses a fixed address

 --Start Address Test
 if (STATE = "01000000" or STATE = "01000100"
 or STATE = "01001000" or STATE = "01001100"
 or STATE = "01010000" or STATE = "01010100"
 or STATE = "01011000" or STATE = "01011100"
 or STATE = "01100000" or STATE = "01100100"
 or STATE = "01101000" or STATE = "01101100"
 or STATE = "01110000" or STATE = "01110100"
 or STATE = "01111000" or STATE = "01111100"
 or STATE = "10000000" or STATE = "10000100"
 or STATE = "10001000" or STATE = "10001100"
 or STATE = "10010000" or STATE = "10010100"
 or STATE = "10011000" or STATE = "10011100") then
 RESET <= "000000";
 ENABLE <= "010000";

 elsif (STATE = "01000001" or STATE = "01000101"
 or STATE = "01001001" or STATE = "01001101"
 or STATE = "01010001" or STATE = "01010101"

212
 or STATE = "01011001" or STATE = "01011101"

 or STATE = "01100001" or STATE = "01100101"
 or STATE = "01101001" or STATE = "01101101"
 or STATE = "01110001" or STATE = "01110101"
 or STATE = "01111001" or STATE = "01111101"
 or STATE = "10000001" or STATE = "10000101"
 or STATE = "10001001" or STATE = "10001101"
 or STATE = "10010001" or STATE = "10010101"
 or STATE = "10011001" or STATE = "10011101") then
 RESET <= "000000";
 ENABLE <= "010000";

 elsif (STATE = "01000010" or STATE = "01000110"
 or STATE = "01001010" or STATE = "01001110"
 or STATE = "01010010" or STATE = "01010110"
 or STATE = "01011010" or STATE = "01011110"
 or STATE = "01100010" or STATE = "01100110"
 or STATE = "01101010" or STATE = "01101110"
 or STATE = "01110010" or STATE = "01110110"
 or STATE = "01111010" or STATE = "01111110"
 or STATE = "10000010" or STATE = "10000110"
 or STATE = "10001010" or STATE = "10001110"
 or STATE = "10010010" or STATE = "10010110"
 or STATE = "10011010" or STATE = "10011110") then
 RESET <= "010000";
 ENABLE <= "100000";

 elsif (STATE = "01000011" or STATE = "01000111"
 or STATE = "01001011" or STATE = "01001111"
 or STATE = "01010011" or STATE = "01010111"
 or STATE = "01011011" or STATE = "01011111"
 or STATE = "01100011" or STATE = "01100111"
 or STATE = "01101011" or STATE = "01101111"
 or STATE = "01110011" or STATE = "01110111"
 or STATE = "01111011" or STATE = "01111111"
 or STATE = "10000011" or STATE = "10000111"
 or STATE = "10001011" or STATE = "10001111"
 or STATE = "10010011" or STATE = "10010111"
 or STATE = "10011011" or STATE = "10011111") then
 RESET <= "000000";
 ENABLE <= "010000";

 elsif (STATE = "11000000" or STATE = "11000001"
 or STATE = "11000010" or STATE = "11000011"
 or STATE = "11000100" or STATE = "11000101"
 or STATE = "11000110" or STATE = "11000111"
 or STATE = "11001000" or STATE = "11001001"
 or STATE = "11001010" or STATE = "11001011"
 or STATE = "11001100" or STATE = "11001101"
 or STATE = "11001110" or STATE = "11001111"
 or STATE = "11010000" or STATE = "11010001"
 or STATE = "11010010" or STATE = "11010011"
 or STATE = "11010100" or STATE = "11010101"
 or STATE = "11010110" or STATE = "11010111") then
 RESET <= "010000";

213

 ENABLE <= "010000";

 --Start Memory Test
 elsif STATE = "11111000" then
 RESET <= "110000";
 ENABLE <= "000001";

 elsif STATE = "11111001" then
 RESET <= "000001";
 ENABLE <= "000010";

 elsif STATE = "11111010" then
 RESET <= "000000";
 ENABLE <= "000100";

 elsif STATE = "11111011" then
 RESET <= "000000";
 ENABLE <= "001000";

 else
 RESET <= "111111";
 ENABLE <= "000000";

 end if;

end process;

end Behavioral;

214

G. COUNTER-DECODE MODULE

1. VHDL Code

-- filename: counter_decode.vhd
-- written by: Charles Hulme
--
-- This module tells you which address counter is selected based
on
-- current state.
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity counter_decode is
 Port (
 state: in std_logic_vector (7 downto 0);
 address1: in std_logic_vector (23 downto 0); --UP_WA
 address2: in std_logic_vector (23 downto 0); --UP_RA
 address3: in std_logic_vector (23 downto 0); --DN_WA
 address4: in std_logic_vector (23 downto 0); --DN_RA
 address5: in std_logic_vector (23 downto 0); --P2_W
 address6: in std_logic_vector (23 downto 0); --P2_WI
 RTWF: out std_logic; --Read True,'1', and Write
False,'0'
 ADDR: out STD_LOGIC_VECTOR (23 downto 0)
);
end counter_decode;

architecture Behavioral of counter_decode is

begin

 fcn: process
(state,address1,address2,address3,address4,address5,address6)

 begin

 --Starting Data Test
 if (state = "00000010" or state = "00000100"
 or state = "00000110" or state = "00001000"
 or state = "00001010" or state = "00001100"
 or state = "00001110" or state = "00010000"
 or state = "00010010" or state = "00010100"
 or state = "00010110" or state = "00011000"
 or state = "00011010" or state = "00011100"
 or state = "00011110" or state = "00100000"
 or state = "00100010" or state = "00100100"

215
 or state = "00100110" or state = "00101000"

 or state = "00101010" or state = "00101100"
 or state = "00101110" or state = "00110000"
 or state = "00110010") then
 ADDR <= "000000000000000000000000"; --any address
for data test
 RTWF <= '0'; --write pattern to memory

 elsif (state = "00000011" or state = "00000101"
 or state = "00000111" or state = "00001001"
 or state = "00001011" or state = "00001101"
 or state = "00001111" or state = "00010001"
 or state = "00010011" or state = "00010101"
 or state = "00010111" or state = "00011001"
 or state = "00011011" or state = "00011101"
 or state = "00011111" or state = "00100001"
 or state = "00100011" or state = "00100101"
 or state = "00100111" or state = "00101001"
 or state = "00101011" or state = "00101101"
 or state = "00101111" or state = "00110001"
 or state = "00110011") then
 ADDR <= "000000000000000000000000"; --same address
as above
 RTWF <= '1'; --read back pattern from memory

 --Starting Address Test
 elsif (state = "01000000" or state = "01000100"
 or state = "01001000" or state = "01001100"
 or state = "10100000" or state = "01010100"
 or state = "01011000" or state = "01011100"
 or state = "01100000" or state = "01100100"
 or state = "01101000" or state = "01101100"
 or state = "01110000" or state = "01110100"
 or state = "01111000" or state = "01111100"
 or state = "10000000" or state = "10000100"
 or state = "10001000" or state = "10001100"
 or state = "10010000" or state = "10010100"
 or state = "10011000" or state = "10011100") then
 ADDR <= address5; --Power-of-2 counter for address
test
 RTWF <= '0'; --write pattern to memory

--note there is no statements for the _WL cases, the null state-
ment below
--for the else statement will keep the same address and RTWF
value

 elsif (state = "01000010" or state = "01000110"
 or state = "01001010" or state = "01001110"
 or state = "01010010" or state = "01010110"
 or state = "01011010" or state = "01011110"
 or state = "01100010" or state = "01100110"
 or state = "01101010" or state = "01101110"
 or state = "01110010" or state = "01110110"
 or state = "01111010" or state = "01111110"

216

 or state = "10000010" or state = "10000110"
 or state = "10001010" or state = "10001110"
 or state = "10010010" or state = "10010110"
 or state = "10011010" or state = "10011110") then
 ADDR <= address6; --Power-of-2 counter for address
test
 RTWF <= '0'; --write inverted pattern to memory

 elsif (state = "01000011" or state = "01000111"
 or state = "01001011" or state = "01001111"
 or state = "01010011" or state = "01010111"
 or state = "01011011" or state = "01011111"
 or state = "01100011" or state = "01100111"
 or state = "01101011" or state = "01101111"
 or state = "01110011" or state = "01110111"
 or state = "01111011" or state = "01111111"
 or state = "10000011" or state = "10000111"
 or state = "10001011" or state = "10001111"
 or state = "10010011" or state = "10010111"
 or state = "10011011" or state = "10011111") then
 ADDR <= address5; --Reset Power of 2s counter for
address test
 RTWF <= '1'; --read pattern from memory

--note there is no statements for the _RL cases, the null state-
ment below
--for the else statement will keep the same address and RTWF
value

 --Starting Memory Test
 elsif state = "11111000" then
 ADDR <= address1; --Up counter for memory test
 RTWF <= '0'; --write pattern to memory

 elsif state = "11111001" then
 ADDR <= address2; --Up counter for memory test
 RTWF <= '1'; --read pattern from memory

 elsif state = "11111010" then
 ADDR <= address3; --Down counter for memory test
 RTWF <= '0'; --write pattern to memory

 elsif state = "11111011" then
 ADDR <= address4; --Down counter for memory test
 RTWF <= '1'; --read pattern from memory

 else
 null;

 end if;

 end process;

end Behavioral;

217

H. COMPARE-ENABLE MODULE

1. VHDL Code

-- filename: comp_en.vhd
-- written by: Charles Hulme
--
-- This module dictates when the comparator can test. Typically,
-- this occurs any time a read operation is occuring.
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity comp_en is
 Port (
 state: in std_logic_vector (7 downto 0);
 comp_enable: out STD_LOGIC
);
end comp_en;

architecture Behavioral of comp_en is

begin

 fcn: process (state)

 begin

 --Staring Data Test
 if (state = "00000011" or state = "00000101"
 or state = "00000111" or state = "00001001"
 or state = "00001011" or state = "00001101"
 or state = "00001111" or state = "00010001"
 or state = "00010011" or state = "00010101"
 or state = "00010111" or state = "00011001"
 or state = "00011011" or state = "00011101"
 or state = "00011111" or state = "00100001"
 or state = "00100011" or state = "00100101"
 or state = "00100111" or state = "00101001"
 or state = "00101011" or state = "00101101"
 or state = "00101111" or state = "00110001"
 or state = "00110011") then
 comp_enable<='1';

 --Starting Address Test
 elsif (state = "01000011" or state = "01000111"
 or state = "01001011" or state = "01001111"
 or state = "01010011" or state = "01010111"
 or state = "01011011" or state = "01011111"
 or state = "01100011" or state = "01100111"

218
 or state = "01101011" or state = "01101111"

 or state = "01110011" or state = "01110111"
 or state = "01111011" or state = "01111111"
 or state = "10000011" or state = "10000111"
 or state = "10001011" or state = "10001111"
 or state = "10010011" or state = "10010111"
 or state = "10011011" or state = "10011111") then
 comp_enable<='1';

 elsif (state = "11000000" or state = "11000001"
 or state = "11000010" or state = "11000011"
 or state = "11000100" or state = "11000101"
 or state = "11000110" or state = "11000111"
 or state = "110001000" or state = "11001001"
 or state = "11001010" or state = "11001011"
 or state = "11001100" or state = "11001101"
 or state = "11001110" or state = "11001111"
 or state = "11010000" or state = "11010001"
 or state = "11010010" or state = "11010011"
 or state = "11010100" or state = "11010101"
 or state = "11010110" or state = "11010111") then
 comp_enable<='1';

 --Starting Memory Test
 elsif state = "11111001" then
 comp_enable<='1';

 elsif state = "11111011" then
 comp_enable<='1';

 else
 comp_enable<='0';

 end if;

 end process;

end Behavioral;

219

I. PASS-COUNTER MODULE

1. Schematic Diagram

220

J. STATUS MODULE

1. VHDL Code

-- filename: lat_stat.vhd
-- written by: Charles Hulme
--
-- If a test fails, the current state and memory location are latched
--
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity lat_stat is
 Port (
 state: in std_logic_vector (7 downto 0);
 flag: in std_logic;
 addr: in std_logic_vector (23 downto 0);
 test_data: in std_logic_vector (23 downto 0);
 location: out STD_LOGIC_vector (23 downto 0);
 data: out STD_LOGIC_vector (23 downto 0);
 mode: out STD_LOGIC_vector (7 downto 0)
);
end lat_stat;

architecture Behavioral of lat_stat is
signal state_latch: std_logic_vector (7 downto 0);
signal addr_latch: std_logic_vector (23 downto 0);
signal data_latch: std_logic_vector (23 downto 0);

begin

fcn: process (flag,addr,state,test_data)

begin
state_latch <= state;
addr_latch <= addr;
data_latch <= test_data;

 if flag = '1' then
 location<=addr_latch;
 data<=data_latch;
 mode<=state_latch;
 else
 null;
 end if;

end process;

end Behavioral;

221

K. TOP LEVEL CONTROL LOGIC MODULE

1. Schematic Diagram

222

APPENDIX B: COMPLETE SCHEMATICS, VHDL CODES AND
TEST-BENCH WAVEFORMS FOR EPROM/PROM TEST

Appendix B contains the schematic diagrams, VHDL code, and Test-Bench wave-

forms for the complete EPROM/PROM test design. The appendix is organized by mod-

ule, so each section contains a module schematic/VHDL code and a Test-Bench wave-

form.

223

A. MULTIPLEXER MODULE

1. VHDL Code

-- filename: multiplexer.vhd
-- written by: Charles Hulme
--
-- This program simulates a multiplexer and outputs all zeros if
-- muxSum = 0 or the input value of Sum if muxSum = 1
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity multiplexer is
 Port (muxSum : in std_logic;
 one : in std_logic_vector (15 downto 0);
 Sum : out std_logic_vector (15 downto 0)
);
end multiplexer;

architecture Behavioral of multiplexer is

begin

process (muxSum, one)
begin
 if muxSum = '0' then
 Sum <= "0000000000000000";
 else
 Sum <= one;
 end if;
end process;

end Behavioral;

224

2. Test-Bench Waveform

225

B. ADDER MODULE

1. VHDL Code

-- filename: adder.vhd
-- written by: Charles Hulme
--
-- This program adds an 8 bit number with a 16 bit number
-- by concatinating 8 zeros on the front of the 8 bit
-- number.
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.NUMERIC_STD.ALL;

entity adder is
 Port (a: in std_logic_vector (15 downto 0);
 b: in std_logic_vector (7 downto 0);
 sum: out std_logic_vector (15 downto 0)
);
end adder;

architecture Behavioral of adder is

begin

sum <= a + ("00000000"&b);

end Behavioral;

226

2. Test-Bench Waveform

227

C. DATA MODULE

1. Schematic Diagram

228

2. Test-Bench Waveform

229

D. CONTROL MODULE

1. VHDL Code
--
-- filename: control.vhd
-- written by: Charles Hulme
--
-- This state machine controls the transition of states
-- based on the inputs run and newdata.
--
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity control is
 Port (CLOCK : in std_logic;
 RESTART : in std_logic;
 run : in std_logic;
 newdata : in std_logic;
 state : out std_logic_vector(3 downto 0);
 done : out std_logic;
 muxSum : out std_logic;
 rSumLoad : out std_logic;
 rResultLoad : out std_logic);
end control;

architecture Behavioral of control is

type FSM_type is (state0,state1,state2);

signal Curr_State, Next_State : FSM_Type;

begin

-- Process that implements the Next State Logic
nxtStProc: process(Curr_State,RESTART,run,newdata)

 begin

 if RESTART = '1' then
 Next_State <= state0;
 else

230
 case Curr_State is

 when state0 =>
 if run = '1' then
 Next_State <= state1;
 elsif run = '0' then
 Next_State <= state0;
 end if;

 when state1 =>
 if newdata = '1' then
 Next_State <= state2;
 elsif newdata = '0' then
 Next_State <= state1;
 elsif run = '0' then
 Next_state <= state0;
 end if;

 when state2 =>
 if run = '1' then
 Next_State <= state1;
 elsif run = '0' then
 Next_state <= state0;
 end if;

 end case;

end if;

end process nxtStProc;

 --Process to register current state
 curStProc: process (CLOCK,RESTART)
 begin
 if (RESTART = '1') then
 Curr_State <= state0;
 elsif (CLOCK'event and CLOCK ='1')then
 Curr_State <= Next_State;
 end if;
 end process curStProc;

 --Process to generate outputs
 outConProc: process(Curr_State)
 begin

231

 -- Set certain outputs depending on which state currently in
 case Curr_State is

 when state0 =>
 done <= '1';
 muxSum <= '0';
 rSumLoad <= '1';
 rResultLoad <= '0';
 state <= "0000";

 when state1 =>
 done <= '0';
 muxSum <= '1';
 rSumLoad <= '0';
 rResultLoad <= '0';
 state <= "0001";

 when state2 =>
 done <= '1';
 muxSum <= '1';
 rSumLoad <= '1';
 rResultLoad <= '1';
 state <= "0010";

 end case;

 end process outConProc;

end Behavioral;

232

2. Test-Bench Waveform

233

E. SYSTEM MODULE

1. Schematic Diagram

234

2. Test-Bench Waveform

235

F. COMPARATOR MODULE

1. Schematic Diagram

236

2. Test-Bench Waveform

237

G. TOP LEVEL MODULE

1. Schematic Diagram

238

2. Test-Bench Waveform

239

THIS PAGE INTENTIONALLY LEFT BLANK

240

LIST OF REFERENCES

1. Bursch, Daniel W., Notes for SS3011 (Space Technology and Applications), Na-
val Postgraduate School, 2003 (unpublished).

2. Lashomb, Peter A., “Triple Modular Redundant (TMR) Microprocessor System
for Field-Programmable Gate Array (FPGA) Implementation,” Master's Thesis,
Naval Postgraduate School, Monterey, California, March 2002.

3. Butler, Jon T., Notes for EC4810 (Fault Tolerant Computing), Naval Postgraduate
School, 2003 (unpublished).

4. Ebert, Dean, “Design and Development of a Configurable Fault Tolerant Proces-
sor (CFTP) for Space Applications,” Master’s Thesis, Naval Postgraduate School,
Monterey, California, June 2003.

5. Configurable Fault Tolerant Processor Space Test Program Application for
Spaceflight, DD FORM 1721, July 2003.

6. Configurable Fault Tolerant Processor Space Test Program Application for
Spaceflight, DD FORM 1721, August 2002.

7. Saini, Milan, “Platform FPGAs Take on ASIC SOCs,” Xcell Journal Online, Is-
sue 42, March 1, 2003, http://www.xilinx.com/publications/products/v2pro/
xc_pdf/xc_socs.pdf, December 2003.

8. Davis, Shelly, “The Virtex Family - a Powerful ASIC Alternative,” Xcell Journal
Online, Issue 33, December 10, 1999, http://www.xilinx.com/xcell/xl33/
xl33_35.pdf, December 2003.

9. “Orbital Express EC3230 Project Brief,” Presented by Captain Charles Hulme,
USMC, and 1stLt Rong Yuan, TWAF, March 2003.

10. “Orbital Express SERB Brief,” Presented by Major James Shoemaker, USAF,
Ph.D., November 2002.

11. Payne, John C., “Fault Tolerant Computing Testbed: A Tool for the Analysis of
Hardware and Software Fault Handling Techniques", Master's Thesis, Naval
Postgraduate School, Monterey, California, December 1998.

12. Summers, David, “Implementation of a Fault Tolerant Computing Testbed: A tool
for the Analysis of Hardware and Software Fault Handling Techniques,” Master’s
Thesis, Naval Postgraduate School, Monterey, California, June 2000.

241

13. Groening, S. E. and Whitehouse, K.D., “Application of Fault-Tolerant Computing
for Spacecraft Using Commercial-Off-The-Shelf Microprocessors,” Master’s
Thesis, Naval Postgraduate School, Monterey, California, June 2000.

14. Hofheinz D., “Completion and Testing of a TMR Computing Test Bed and Rec-
ommendations for a Flight-Ready Follow-On Design,” Master's Thesis, Naval
Postgraduate School, Monterey, California, December 2000.

15. Johnson, Steven, “Implementation of a Configurable Fault Tolerant Processor
(CFTP),” Master’s Thesis, Naval Postgraduate School, Monterey, California,
March 2003.

16. Clark, Kenneth A., “The Effect of Single Event Transients on Complex Digital
Systems,” Doctoral Dissertation, Naval Postgraduate School, Monterey, Califor-
nia, June 2002.

17. “CFTP For Space Based Applications Small Satellite Conference Brief,” Pre-
sented by Captain Charles Hulme, USMC, August 2003.

18. “Xilinx QPro Virtex 2.5V Radiation Hardened FPGAs,” Xilinx Data sheet
DS028, San Jose, California, November 2001.

19. “Xilinx Packaging and Thermal Characteristics: Thermally Enhanced Packaging,”
http://www.xilinx.com/publications/products/packaging/enhanced.htm, October
2003.

20. “Intel Advanced Boot Block Flash Memory (C3),” Intel Data sheet 290645-016,
Santa Clara, California, May 2003.

22. “XC18V00 Series of In-System Programmable Configuration PROMS,” Xilinx
Data Sheet DS026 (v4.0), San Jose, California, June 2003.

23. “QPro Series Configuration PROMs (XQ) including Radiation-Hardened Series
(XQR),” Xilinx Data Sheet DS062 (v3.1), San Jose, California, November 2001.

21. “Virtex 2.5V Field Programmable Gate Arrays,” Xilinx Data sheet DS003-1, San
Jose, California, April 2001.

24. “Elpida HM5225165B-75/A6/B6 HM5225805B-75/A6/B6 HM5225405B-
75/A6/B6 256M LVTTL interface SDRAM” Data Sheet E0082H10 (1st edition),
Tokyo, Japan, January 2001.

25. Email from Lt. Richard Caldwell, USAF of the DoD Space Test Program to Cap-
tain Charles Hulme, USMC, of Naval Postgraduate School, 5 December 2002.

242

26. Stroud, Charles E., A Designer’s Guide to Built-In Self-Test, Kluwer Academic
Publishers, Massachusetts, 2002.

27. MIL-STD-1540C, Test Requirements for Launch, Upper-Stage, and Space Vehi-
cles, 15 September 1994.

28. Barr, Michael, Programming Embedded Systems in C and C++, First Edition,
O’Reilly and Associates, Inc., 1999.

29. M.D. Ercegovac, Introduction to Digital Systems, John Wiley & Sons, 1999.

30. M.D. Ercegovac, Digital Systems and Hardware/Firmware Algorithms, John
Wiley & Sons, 1985.

31. “XC17V00 Series Configuration PROMS,” Xilinx Data Sheet DS073 (v1.1), San
Jose, California, April 2002.

32. Wakerly, J. F., Digital Design, Principles and Practice, Third Edition, Prentice
Hall, New Jersey, 2001.

33. “Configuration and Readback of Virtex FPGAs using (JTAG) Boundary Scan,”
Xilinx Data Sheet DS139 (v1.4), San Jose, California, April 2002.

34. “IEEE Standard Access Test Port and Boundary-Scan Architecture,” Institute of
Electrical and Electronics Engineers, New York, New York, July 2001.

35. C. Jordan and W. P. Marnane, “Incoming Inspection of FPGAs,” Proc. European
Test Conf., pp. 371–377, April 1993.

243

THIS PAGE INTENTIONALLY LEFT BLANK

244

245

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

4. Director, Training and Education
 MCCDC, Code C46

Quantico, Virginia

5. Director, Marine Corps Research Center,
 MCCDC, Code C40RC

Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
Camp Pendleton, California

7. Professor Herschel H. Loomis
Naval Postgraduate School
Monterey, California

8. Professor Alan A. Ross
Naval Postgraduate School
Monterey, California

9. LCDR Joe Reason, USN

National Reconnaissance Office
Chantilly, Virginia

10. CPT Brian Bailey, USAF

National Reconnaissance Office
Chantilly, Virginia

11. Captain Charles Hulme, USMC

United States Naval Academy
Annapolis, Maryland

	I.INTRODUCTION
	II.CONFIGURABLE FAULT TOLERANT PROCESSOR DESIGN
	A.BACKGROUND
	1.Effects
	2.Solution

	B.CONCEPT
	C.COMPONENTS
	D.ARCHITECTURE
	E.CFTP STATUS
	F.CHAPTER SUMMARY

	III.BUILT-IN SELF-TEST
	A.AN INTRODUCTION TO BIST
	What is BIST?
	2.Basic Architecture
	3.Advantages and Disadvantages
	The CFTP Self-Tests

	B.RANDOM ACCESS MEMORY TESTING
	1.Memory Problems
	a.Electrical Wiring Problems
	b.Chip Connection Problems

	2.Developing a Test Strategy
	3.Data-Bus Test
	4.Address-Bus Test
	5.Memory-Chip Test
	6.Designing the RAM Test
	a.Overview
	b.Circuit Under Test (RAM)
	c.Test Pattern Generator (Pattern)
	d.Output Response Analyzer (Comparator)
	e.State Machine
	f.Address Counter (Counter)
	g.Test Controller (Top-Level Control Logic)
	(1)Counter-Control Module. The Counter-Control module, shown in Figure 25 (see Appendix A for complete internal schematics and VHDL code), consists of one input (state) and two outputs (reset and enable). Based on the current state fed to the m
	(2) Counter-Decode Module. The Counter-Decode module, shown in Figure 26 (see Appendix A for complete internal schematics and VHDL code), consists of seven inputs (state, address1, address2, address3, address4, address5, and address6) and two outp
	(3)Compare-Enable Module. The Compare-Enable module, shown in Figure 27 (see Appendix A for complete internal schematics and VHDL code), consists of one input (state) and one output (comp_enable). Based on the current state fed to the module, t
	(4)Pass-Counter Module. The Pass-Counter module, shown in Figure 28 (see Appendix A for complete internal schematics and VHDL code), consists of three inputs (enable, clock, and reset) and one output (Num_passes). The Pass-Counter module is a s
	(5) Status Module. The Status module, shown in Figure 29 (see Appendix A for complete internal schematics and VHDL code), consists of four inputs (flag, state, addr and test_data) and three outputs (location, mode, and data). When the Status mo

	Testing the Test
	Conclusions and RAM BIST Implementation

	C.READ-ONLY MEMORY TESTING
	State the Problem to be Solved
	2.Determine the Inputs and Outputs for the Test Device
	3.Define the States, Transitions and Outputs of Each State
	4.Determine the Computational Modules
	5.Develop a Data Subsystem Module
	a.Registers
	b.Multiplexers

	6.Develop the System Module
	7.Develop the Top Level Module
	8.Testing the Test
	9.Conclusions and ROM BIST Implementation

	D.FIELD-PROGRAMMABLE GATE ARRAY TESTING
	1.Introduction
	2.Interfacing with the Test
	3.The Test Process
	4.The CLB Tests
	5.The Interconnect Test
	6.Conclusions and FPGA BIST Implementation

	IV.CONCLUSIONS AND FOLLOW-ON RESEARCH
	A.OVERVIEW
	B.CONCLUSIONS
	C.FOLLOW-ON RESEARCH

	APPENDIX A:COMPLETE SCHEMATICS, VHDL CODES AND TEST-BENCH WAVEFORMS FOR SDRAM TEST
	A.COMPLETE DESIGN
	1.Schematic Diagram
	2.Test-Bench Waveform

	B.PATTERN MODULE
	1.VHDL Code
	2.Test-Bench Waveform

	C.COMPARATOR MODULE
	1.Schematic Diagram
	2.Test-Bench Waveform

	D.STATE MACHINE MODULE
	1.VHDL Code
	2.Test-Bench Waveform

	E.ADDRESS COUNTER MODULE
	1.Schematic Diagram
	2.Test-Bench Waveform

	F.COUNTER-CONTROL MODULE
	1.VHDL Code

	G.COUNTER-DECODE MODULE
	1.VHDL Code

	H.COMPARE-ENABLE MODULE
	1.VHDL Code

	I.PASS-COUNTER MODULE
	1.Schematic Diagram

	J.STATUS MODULE
	1.VHDL Code

	K.TOP LEVEL CONTROL LOGIC MODULE
	1.Schematic Diagram

	APPENDIX B:COMPLETE SCHEMATICS, VHDL CODES AND TEST-BENCH WAVEFORMS FOR EPROM/PROM TEST
	A.MULTIPLEXER MODULE
	1.VHDL Code
	2.Test-Bench Waveform

	B.ADDER MODULE
	1.VHDL Code
	2.Test-Bench Waveform

	C.DATA MODULE
	1.Schematic Diagram
	2.Test-Bench Waveform

	D.CONTROL MODULE
	1.VHDL Code
	2.Test-Bench Waveform

	E.SYSTEM MODULE
	1.Schematic Diagram
	2.Test-Bench Waveform

	F.COMPARATOR MODULE
	1.Schematic Diagram
	2.Test-Bench Waveform

	G.TOP LEVEL MODULE
	1.Schematic Diagram
	2.Test-Bench Waveform

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

